【題目】在菱形ABCD中,P是AB上一動點(但不與A、B兩點重合),DP的延長線交CB延長線于點E.
(1)△APD與△BPE是否總相似,為什么?
(2)當P為AB中點時,求證:點B是EC中點.
(3)當PD⊥AB時,設AD=10,sinA= ,求BE的長.
【答案】(1)相似.理由見解析;(2)證明見解析;(3)
【解析】試題分析:(1)由四邊形ABCD為菱形,得到AD∥BC,即可得到結論;(2)先由角角邊證得△APD≌△BPE,AD=BE,再由四邊形ABCD為菱形, 得到AD=BC,即BE=BC,即點B為EC中點.(3)再Rt△APD中,由AD=10,sinA=得PD=8,AP=6,故PB=4,由△APD∽△BPE可得
=
,即可求得BE長.
試題解析:: (1)相似.
∵四邊形ABCD為菱形,
∴AD∥BC.
∴∠DAP=∠EBP,∠ADP=∠BEP.
∴△APD△BPE.
(2)∵P是AB中點,
∴AP=BP.
又∵∠DAP=∠EBP,∠ADP=∠BEP,
∴△APD≌△BPE.
∴AD=BE.
∵四邊形ABCD為菱形,
∴AD=BC.
∴BE=BC.
即點B為EC中點.
(3)∵PD⊥AB,AD=10,sinA=. ∴PD=8.∴AP=6.∴PB=AB—AP=10—6=4.
∵△APD∽△BPE,∴ =
∴BE=
=
=
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( )
A.當AB=BC時,它是菱形
B.當AC⊥BD時,它是菱形
C.當∠ABC=90°時,它是矩形
D.當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由幾個相同的邊長為1的小立方塊搭成的幾何體的俯視圖如圖所示.方格中的數字表示該位置的小立方塊的個數.
(1)請在下面方格紙中分別畫出這個幾何體的正視圖和左視圖.
(2)根據三視圖,請你求出這個組合幾何體的表面積(包括底面積).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】采摘茶葉是茶農一項很繁重的勞動,利用單人便攜式采茶機能大大提高生產效率.實踐證明,一臺采茶機每天可采茶60公斤,是人手工采摘的5倍,購買一臺采茶機需2400元.茶園雇人采摘茶葉,按每采摘1公斤茶葉m元的標準支付雇工工資,一個雇工手工采摘茶葉20天獲得的全部工錢正好購買一臺采茶機.
(1)求m的值;
(2)有兩家茶葉種植戶王家和顧家均雇人采摘茶葉,王家雇用的人數是顧家的2倍.王家所雇的人中有的人自帶采茶機采摘,
的人手工采摘,顧家所雇的人全部自帶采茶機采摘.某一天,王家付給雇工的工資總額比顧家付給雇工的工資總額少600元.問顧家當天采摘了多少公斤茶葉?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售一種西裝和領帶,西裝每套定價200元,領帶每條定價40元.國慶節期間商場決定開展促銷活動,活動期間向客戶提供兩種優惠方案:
方案一:買一套西裝送一條領帶;
方案二:西裝和領帶都按定價的90%付款.
現某客戶要到該商場購買西裝20套,領帶x.
(1)若該客戶按方案一購買,需付款多少元(用含x的式子表示)?若該客戶按方案二購買,需付款多少元(用含x的式子表示)?
(2)若,通過計算說明此時按哪種方案購買較為合算;
(3)當時,你能給出一種更為省錢的購買方法嗎?試寫出你的購買方法和所需費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知E,F分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當E,F分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點E不是邊BC的中點,F不是邊CD的中點,且CE=DF,上述結論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點E,F分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎上,連接AE和EF,若點M,N,P,Q分別為AE,EF,FD,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(﹣2,a),B(1,b),C(3,c)是拋物線y=x2﹣2x+2上的三點,則a,b,c的大小關系為( 。
A.a>c>bB.b>a>cC.c>a>bD.b>c>a
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com