【題目】如圖,在⊙O上依次有A、B、C三點,BO的延長線交⊙O于E,,過點C作CD∥AB交BE的延長線于D,AD交⊙O于點F.
(1)求證:四邊形ABCD是菱形;
(2)連接OA、OF,若∠AOF=3∠FOE且AF=3,求的長.
【答案】(1)證明見解析;(2)
【解析】
(1)先根據圓的性質得:∠CBD=∠ABD,由平行線的性質得:∠ABD=∠CDB,根據直徑和等式的性質得:,,由一組對邊平行且相等可得四邊形ABCD是平行四邊形,由AB=BC可得結論;
(2)先設∠FOE=x,則∠AOF=3x,根據∠ABC+∠BAD=180°,列方程得:4x+2x+ (180-3x)=180,求出x的值,接著求
所對的圓心角和半徑的長,根據弧長公式可得結論.
(1)證明:∵,
∴∠CBD=∠ABD,
∵CD∥AB,
∴∠ABD=∠CDB,
∴∠CBD=∠CDB,
∴CB=CD,
∵BE是⊙O的直徑,
∴,
∴AB=BC=CD,
∵CD∥AB,
∴四邊形ABCD是菱形;
(2)∵∠AOF=3∠FOE,
設∠FOE=x,則∠AOF=3x,
∠AOD=∠FOE+∠AOF=4x,
∵OA=OF,
∴∠OAF=∠OFA=(180﹣3x)°,
∵OA=OB,
∴∠OAB=∠OBA=2x,
∴∠ABC=4x,
∵BC∥AD,
∴∠ABC+∠BAD=180°,
∴4x+2x+(180﹣3x)=180,
x=20°,
∴∠AOF=3x=60°,∠AOE=80°,
∴∠COF=80°×2﹣60°=100°,
∵OA=OF,
∴△AOF是等邊三角形,
∴OF=AF=3,
∴的長=
=
.
科目:初中數學 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為
m.
(1)求拋物線的函數關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y1=ax+b的圖象與反比例函數y2=的圖象交于點A(1,2)和B(﹣2,m).
(1)求一次函數和反比例函數的表達式;
(2)請直接寫出y1≥y2時x的取值范圍;
(3)過點B作BE∥x軸,AD⊥BE于點D,點C是直線BE上一點,若∠DAC=30°,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一個二次函數的對稱軸是x=1,圖象最低點P的縱坐標是﹣8,圖象過(﹣2,10)且與x軸交于A,B與y軸交于C.求:
(1)這個二次函數的解析式;
(2)△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交
軸的負半軸于點
.點
是
軸正半軸上一點,點
關于點
的對稱點
恰好落在拋物線上.過點
作
軸的平行線交拋物線于另一點
.若點
的橫坐標為1,則
的長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y1=x2+mx+n的圖象經過點P(﹣3,1),對稱軸是經過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數y2=kx+b的圖象經過點P,與x軸相交于點A,與二次函數的圖象相交于另一點B,點B在點P的右側,PA:PB=1:5,求一次函數的表達式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ACC′是由△ABB′經過位似變換得到的
(1)求出△ACC′與△ABB′的相似比,并指出它們的位似中心;
(2)△AEE′是△ABB′的位似圖形嗎?如果是,求相似比;如果不是說明理由;
(3)如果相似比為3,那么△ABB′的位似圖形是什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017湖北省鄂州市)小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發,向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com