【題目】如圖1,在矩形ABCD中,AB=2,AD=,E是CD邊上的中點,P是BC邊上的一點,且BP=2CP.
(1)求證:∠AED=∠BEC;
(2)判斷EB是否平分∠AEC,并說明理由;
(3)如圖2,連接EP并延長交AB的延長線于點F,連接AP,不添加輔助線,△PFB可以由都經過P點的兩次變換與△PAE組成一個等腰三角形,直接寫出兩種方法(指出對稱軸、旋轉中心、旋轉方向和平移距離).
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】
(1)由矩形的性質得出AD=BC=,CD=AB=2,∠D=∠C=90°,由中點的定義得出DE=CE=
CD=1,再由SAS證明△ADE≌△BCE,即可得出結論;
(2)用銳角三角函數求出∠AED=60°,得出∠BEC=∠AED=60°,即可得出結論;
(3)先判斷出△AEP≌△FBP,即可得出結論.
(1)證明:∵四邊形ABCD是矩形,
∴AD=BC=,CD=AB=2,∠D=∠C=90°,
∵E是CD邊上的中點,∴DE=CE=CD=1,
在△ADE和△BCE中,,
∴△ADE≌△BCE(SAS),
∴∠AED=∠BEC;
(2)解:EB平分∠AEC,理由如下:
在Rt△ADE中,AD=,DE=1,
∴tan∠AED=,
∴∠AED=60°,
∴∠BEC=∠AED=60°,
∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
∴EB平分∠AEC;
(3)解:∵BP=2CP,BC=,
∴CP=,BP=
,
在Rt△CEP中,tan∠CEP=,
∴∠CEP=30°,
∴∠BEP=30°,
∴∠AEP=90°,
∵CD∥AB,
∴∠F=∠CEP=30°,
在Rt△ABP中,tan∠BAP=,
∴∠PAB=30°,
∴∠EAP=30°=∠F=∠PAB,
∵CB⊥AF,
∴AP=FP,∠FBP=90°=∠AEP,
在△AEP和△FBP中,,
∴△AEP≌△FBP(AAS),
∴△PFB能由都經過P點的兩次變換與△PAE組成一個等腰三角形,
變換的方法為:①將△BPF繞點P順時針旋轉120°和△EPA重合,再沿PE折疊;
②將△BPF以過點P垂直于BC的直線折疊,再繞點P逆時針旋轉60°.
科目:初中數學 來源: 題型:
【題目】已知:如圖,反比例函數y= 的圖象與一次函數y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數和反比例函數的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)如圖,OA在x軸上,OB在y軸上,OA=8,AB=10,點C在邊OA上,AC=2,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(
)的圖象經過圓心P,則k= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,校園內有兩幢高度相同的教學樓AB,CD,大樓的底部B,D在同一平面上,兩幢樓之間的距離BD長為24米,小明在點E(B,E,D在一條直線上)處測得教學樓AB頂部的仰角為45°,然后沿EB方向前進8米到達點G處,測得教學樓CD頂部的仰角為30°.已知小明的兩個觀測點F,H距離地面的高度均為1.6米,求教學樓AB的高度AB長.(精確到0.1米)參考值:≈1.41,
≈1.73.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,己知△ABC,任取一點O,連接AO,BO,CO,并取它們的中點D,E,F,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長比為1∶2;④△ABC與△DEF的面積比為4∶1. 正確的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在宣傳“民族團結”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學生從中選擇并且只能選擇一種最喜歡的,學校就宣傳形式對學生進行了抽樣調查,并將調查結果繪制了如下兩幅不完整的統計圖.
請結合圖中所給信息,解答下列問題:
(1)本次調查的學生共有_____人;
(2)補全條形統計圖;
(3)該校共有1200名學生,請估計選擇“唱歌”的學生有多少人?
(4)七年一班在最喜歡“器樂”的學生中,有甲、乙、丙、丁四位同學表現優秀,現從這四位同學中隨機選出兩名同學參加學校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:若拋物線的頂點與x軸的兩個交點構成的三角形是直角三角形,則這種拋物線被稱為:“直角拋物線”.如圖,直線l:y=x+b經過點M(0,
),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn) (n為正整數),依次是直線l上的點,第一個拋物線與x軸正半軸的交點A1(x1,0)和A2(x2,0),第二個拋物線與x軸交點A2(x2,0)和A3(x3,0),以此類推,若x1=d(0<d<1),當d為_____時,這組拋物線中存在直角拋物線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=(m≠0)的圖象經過點(1,4),一次函數y=﹣x+b的圖象經過反比例函數圖象上的點Q(﹣4,n).
(1)求反比例函數與一次函數的表達式;
(2)一次函數的圖象分別與x軸、y軸交于A、B兩點,與反比例函數圖象的另一個交點為P點,連結OP、OQ,求△OPQ的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數軸的正半軸上運動,點B在數軸上所表示的數為m.
(1)當半圓D與數軸相切時,m= .
(2)半圓D與數軸有兩個公共點,設另一個公共點是C.
①直接寫出m的取值范圍是 .
②當BC=2時,求△AOB與半圓D的公共部分的面積.
(3)當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com