精英家教網 > 初中數學 > 題目詳情

【題目】已知中,是邊上一點,DEBC于點,將沿翻折得到,若是直角三角形,則長為________.

【答案】

【解析】

先根據勾股定理得到AC=5,再根據平行線分線段成比例得到ADAE=ABAC=45,設AD=x,則AE=A′E=x,EC=5-xA′B=2x-4,在RtA′BC中,根據勾股定理得到A′C,再根據△A′EC是直角三角形,根據勾股定理得到關于x的方程,解方程即可求解.

解:在△ABC中,∠B=90°,BC=3,AB=4,
AC=5
DEBC,
ADAB=AEAC,即ADAE=ABAC=45,
AD=x,則AE=A′E=x,EC=5-x,A′B=2x-4,
RtA′BC中,A′C=
∵△A′EC是直角三角形,
∴①當A'落在邊AB上時,∠EA′C=90°,∠BA′C=ACB,A′B=3×tanACB=AD=;
②點A在線段AB的延長線上,
解得x1=4(不合題意舍去),x2=
AD長為
故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發球,球的運動軌跡PAN看作一個拋物線的一部分,當球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標系,乙運動員站立地點M的坐標為(m,0.

1)求拋物線的解析式(不要求寫自變量的取值范圍);

2)求羽毛球落地點N離球網的水平距離(即NC的長);

3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,半徑為10的⊙中,弦,所對的圓心角分別是,若,,則弦的長等于(  )

A. 18B. 16C. 10D. 8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,探究線段AC,BCCD之間的數量關系.

小吳同學探究此問題的思路是:將BCD繞點D,逆時針旋轉90°AED處,點B,C分別落在點AE處(如圖②),易證點C,A,E在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD

簡單應用:

1)在圖①中,若AC=2,BC=4,則CD=

2)如圖③,AB是⊙O的直徑,點C、D在⊙上,弧AD=弧BD,若AB=13BC=12,求CD的長.

拓展規律:

3)如圖4,ABC中,∠ACB=90°,AC=BC,點PAB的中點,若點E滿足AE=AC,CE=CA,且點E在直線AC的左側時,點QAE的中點,則線段PQAC的數量關系是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在ABC中,∠BAC>90°,點DBC的中點,點EAC上,將CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結AD,則下列結論不一定正確的是( 。

A. AE=EF B. AB=2DE

C. ADFADE的面積相等 D. ADEFDE的面積相等

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班數學興趣小組對函數yx22|x|的圖象和性質進行了探究,探究過程如下:

(1)自變量x的取值范圍是 ,xy的幾組對應值列表如下:

x

3

2

1

0

1

2

3

y

3

0

1

0

1

0

3

2)根據上表數據,在如圖所示的平面直角坐標系中描點,并畫出了函數圖象的一部分,請畫出該圖象的另一部分并觀察函數圖象,寫出該函數的兩條性質.

(3)進一步探究函數圖象發現:關于x的方程2x24|x|a4個實數根,則a的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.

(1)求此反比例函數的表達式;

(2)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,ABC為等腰三角形,AB=AC=a,P點是底邊BC上的一個動點,PDAC,PEAB

⑴用a表示四邊形ADPE的周長為 ;

⑵點P運動到什么位置時,四邊形ADPE是菱形,請說明理由;

⑶如果ABC不是等腰三角形(2),其他條件不變,點P運動到什么位置時,四邊形ADPE是菱形(不必說明理由)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视