【題目】已知中,
是邊
上一點,DE∥BC交
于點
,將
沿
翻折得到
,若
是直角三角形,則
長為________.
【答案】或
【解析】
先根據勾股定理得到AC=5,再根據平行線分線段成比例得到AD:AE=AB:AC=4:5,設AD=x,則AE=A′E=x,EC=5-
x,A′B=2x-4,在Rt△A′BC中,根據勾股定理得到A′C,再根據△A′EC是直角三角形,根據勾股定理得到關于x的方程,解方程即可求解.
解:在△ABC中,∠B=90°,BC=3,AB=4,
∴AC=5,
∵DE∥BC,
∴AD:AB=AE:AC,即AD:AE=AB:AC=4:5,
設AD=x,則AE=A′E=x,EC=5-
x,A′B=2x-4,
在Rt△A′BC中,A′C=,
∵△A′EC是直角三角形,
∴①當A'落在邊AB上時,∠EA′C=90°,∠BA′C=∠ACB,A′B=3×tan∠ACB=,AD=
;
②點A在線段AB的延長線上,
解得x1=4(不合題意舍去),x2=.
故AD長為或
.
故答案為:或
.
科目:初中數學 來源: 題型:
【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發球,球的運動軌跡PAN看作一個拋物線的一部分,當球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標系,乙運動員站立地點M的坐標為(m,0).
(1)求拋物線的解析式(不要求寫自變量的取值范圍);
(2)求羽毛球落地點N離球網的水平距離(即NC的長);
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=
CD.
簡單應用:
(1)在圖①中,若AC=2,BC=4,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長.
拓展規律:
(3)如圖4,△ABC中,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,且點E在直線AC的左側時,點Q為AE的中點,則線段PQ與AC的數量關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點D為BC的中點,點E在AC上,將△CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結AD,則下列結論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班“數學興趣小組”對函數y=x2-2|x|的圖象和性質進行了探究,探究過程如下:
(1)自變量x的取值范圍是 ,x與y的幾組對應值列表如下:
x | … | -3 | - | -2 | -1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | 0 | -1 | 0 | -1 | 0 | 3 | … |
(2)根據上表數據,在如圖所示的平面直角坐標系中描點,并畫出了函數圖象的一部分,請畫出該圖象的另一部分并觀察函數圖象,寫出該函數的兩條性質.
(3)進一步探究函數圖象發現:關于x的方程2x2-4|x|=a有4個實數根,則a的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC為等腰三角形,AB=AC=a,P點是底邊BC上的一個動點,PD∥AC,PE∥AB.
⑴用a表示四邊形ADPE的周長為 ;
⑵點P運動到什么位置時,四邊形ADPE是菱形,請說明理由;
⑶如果△ABC不是等腰三角形(圖2),其他條件不變,點P運動到什么位置時,四邊形ADPE是菱形(不必說明理由).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com