【題目】如圖,已知二次函數 y=ax2+x+c 的圖象與 y 軸交于點 A(0,4),
與 x 軸交于點 B、C,點 C 坐標為(8,0),連接 AB、AC.
(1)請直接寫出二次函數 y=ax2+x+c 的表達式;
(2)判斷△ABC 的形狀,并說明理由;
(3)若點 N 在 x 軸上運動,當以點 A、N、C 為頂點的三角形是等腰三角形時, 請直接寫出此時點 N 的坐標;
(4)若點 N 在線段 BC 上運動(不與點 B、C 重合),過點 N 作 NM∥AC,交AB 于點 M,當△AMN 面積最大時,求此時點 N 的坐標.
【答案】(1)y=﹣x2+
x+4;(2)△ABC是直角三角形,理由見解析;(3)點N的坐標分別為(﹣8,0),(8﹣4
,0),(3,0)或(8+4
,0);(4)當△AMN面積最大時,N點坐標為(3,0).
【解析】
(1)利用待定系數法求解即可;
(2)先求得AB,AC,BC的長,然后根據勾股定理的逆定理即可證得△ABC為直接三角形;
(3)分別以A、C兩點為圓心,AC長為半徑畫弧,與x軸交于三個點,由AC的垂直平分線與x軸交于一個點,分別求得點N的坐標即可;
(4)設點N的坐標為(n,0),則BN=n+2,過M點作MD⊥x軸于點D,根據三角形相似對應邊成比例求得MD=(n+2),然后根據S△AMN=S△ABN﹣S△BMN得出關于n的二次函數,根據函數解析式求得即可.
解:(1)∵二次函數y=ax2+x+c的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標為(8,0),
,
解得,
∴拋物線表達式:y=﹣x2+
x+4;
(2)△ABC是直角三角形.
令 y=0,則﹣x2+
x+4=0, 解得 x1=8,x2=﹣2,
∴點 B 的坐標為(﹣2,0),
由已知可得,
在Rt△ ABO中,AB2=BO2+AO2=22+42=20,
在Rt△AOC中,AC2=AO2+CO2=42+82=80,
又∵BC=OB+OC=2+8=10,
∴在△ABC中,AB2+AC2=20+80=102=BC2,
∴△ABC 是直角三角形;
(3)∵A(0,4),C(8,0),
∴AC==4
,
①以A為圓心,以AC長為半徑作圓,交 x 軸于 N,此時 N 的坐標為(﹣8,0);
②以C為圓心,以AC長為半徑作圓,交x軸于N,此時N的坐標為(8﹣4,0)或(8+4
,0);
③作AC的垂直平分線,交x軸于N,此時N的坐標為(3,0);
綜上,若點N在x軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時, 點N的坐標分別為(﹣8,0)、(8﹣4,0)、(3,0)、(8+4
,0);
(4)設點N的坐標為(n,0),則BN=n+2,過M點作MD⊥x軸于點D,
∴MD∥OA,
∴△BMD∽△BAO,
∴,
∵MN∥AC,
∴,
∴,
∵AO=4,BC=10,BN=n+2,
∴MD=(n+2),
∵S△AMN=S△ABN﹣S△BMN,
=BNOA﹣
BNMD
=(n+2)×4﹣
×
(n+2)2
=﹣(n﹣3)2+5,
∴當△AMN 面積最大時,N點坐標為(3,0).
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,為原點,已知直線
與
軸交于點
,與
軸交于點
,點
與點
關于
軸對稱,如圖①.
(1)點的坐標為________,點
的坐標為________,點
的坐標為________,直線
的解析式為________.
(2)點是
軸上的一個動點(點
不與點
重合),過點
作
軸的垂線,交直線
于點
.交直線
于點
(圖②).
①如圖②,當點在
軸的正半軸上時,若
的面積為
,求點
的坐標;
②連接,若
,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設他們分別以不同的速度勻速行駛,甲先出發6分鐘后,乙才出發,在整個過程中,甲、乙兩人之間的距離y(千米)與甲出發的時間x(分)之間的函數圖象如圖.
(1)A地與B地相距______km,甲的速度為______km/分;
(2)求甲、乙兩人相遇時,乙行駛的路程;
(3)當乙到達終點A時,甲還需多少分鐘到達終點B?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列解題過程:
=
=
=
-2;
=
=
.
請回答下列問題:
(1)觀察上面的解題過程,請直接寫出式子= ;
(2)觀察上面的解題過程,請直接寫出式子= ;
(3)利用上面所提供的解法,請求+···+
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,各頂點的坐標分別為
(1)作出關于原點
成中心對稱的
.
(2)作出點關于
軸的對稱點
若把點
向右平移
個單位長度后,落在
的內部(不包括頂點和邊界),
的取值范圍,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD,點E為AB的中點,且BF=BC.
(1)如圖1,求證:DE⊥EF.
(2)如圖2,若點G在BC上,且CD=3CG,DG、EF交于H點,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市一家電子計算器專賣店的產品每個進價13元,售價20元,多買優惠。凡是一次買10個以上的,每多買1個,所買的全部計算器每個就降低0.10元.例如,某人買20個計算器,于是每個降價0.10×(20-10)=1(元),因此所買的全部20個計算器都按照每個19元計算。但是最低價為每個16元。
(1)寫出該專賣店當一次銷售x個時,所獲利潤y(元)與x(個)之間的函數表達式,并寫出自變量x的取值范圍;
(2)若店主一次賣的個數在10至50個之間,問:一次賣多少個獲得的利潤最大?其最大利潤為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com