【題目】設a,b,c為平面內三條不同直線:
(1)若a∥b,c⊥a,則b與c的位置關系是;
(2)若a∥b,b∥c,則a與c的位置關系是 .
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數根,第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將樣本容量為100的樣本編制成組號①﹣⑧的八個組,簡況如表所示:
組號 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ |
頻數 | 14 | 11 | 12 | 13 | 13 | 12 | 10 |
那么第⑤組的頻率是__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數量關系及位置關系,請直接寫出結論;
(2)現將圖①中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC,D為CB延長線上一點,E為BC延長線上點,且滿足AB2=DB·CE.
(1)求證:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com