【題目】已知:一次函數y=3x﹣2的圖象與某反比例函數的圖象的一個公共點的橫坐標為1.
(1)求該反比例函數的解析式;
(2)將一次函數y=3x﹣2的圖象向上平移4個單位,求平移后的圖象與反比例函數圖象的交點坐標;
(3)請直接寫出一個同時滿足如下條件的函數解析式: ①函數的圖象能由一次函數y=3x﹣2的圖象繞點(0,﹣2)旋轉一定角度得到;
②函數的圖象與反比例函數的圖象沒有公共點.
【答案】
(1)解:把x=1代入y=3x﹣2,得y=1,
設反比例函數的解析式為 ,
把x=1,y=1代入得,k=1,
∴該反比例函數的解析式為
(2)解:平移后的圖象對應的解析式為y=3x+2,
解方程組 ,得
或
.
∴平移后的圖象與反比例函數圖象的交點坐標為( ,3)和(﹣1,﹣1)
(3)解:y=﹣2x﹣2.
(結論開放,常數項為﹣2,一次項系數小于﹣1的一次函數均可)
【解析】(1)先求出兩函數的交點坐標,利用待定系數法即可求得反比例函數的解析式;(2)平移后的圖象對應的解析式為y=3x+2,聯立兩函數解析式,進而求得交點坐標;(3)常數項為﹣2,一次項系數小于﹣1的一次函數均可.
科目:初中數學 來源: 題型:
【題目】為了迎接鄭州市第二屆“市長杯”青少年校園足球超級聯賽,某學校組織了一次體育知識競賽.每班選25名同學參加比賽,成績分別為A、B、C、D四個等級,其中相應等級得分依次記為100分、90分、80分、70分.學校將八年級一班和二班的成績整理并繪制成統計圖,如圖所示.
(1)把一班競賽成績統計圖補充完整;
(2)寫出下表中a、b、c的值:
(3)根據(2)的結果,請你對這次競賽成績的結果進行分析.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結果保留小數點后一位,參考數據: ≈1.41,
≈1.73).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
(1)如圖(1),正方形AEGH的頂點E、H在正方形ABCD的邊上,直接寫出HD:GC:EB的結果(不必寫計算過程);
(2)將圖(1)中的正方形AEGH繞點A旋轉一定角度,如圖(2),求HD:GC:EB;
(3)把圖(2)中的正方形都換成矩形,如圖(3),且已知DA:AB=HA:AE=m:n,此時HD:GC:EB的值與(2)小題的結果相比有變化嗎?如果有變化,直接寫出變化后的結果(不必寫計算過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀求絕對值不等式|x|<3和|x|>3的解集的過程:
因為|x|<3,從如圖1所示的數軸上看:大于-3而小于3的數的絕對值是小于3的,所以|x|<3的解集是-3<x<3;
因為|x|>3,從如圖2所示的數軸上看:小大于-3的數和大于3的數的絕對值是大于3的,所以|x|>3的解集是x<-3或x>3.
解答下面的問題:
(1)不等式|x|<a(a>0)的解集為______;不等式|x|>a(a>0)的解集為______.
(2)解不等式|x-5|<3;
(3)解不等式|x-3|>5.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com