精英家教網 > 初中數學 > 題目詳情

【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CDEF,兩標桿相隔52并且建筑物AB,標桿CDEF在同一豎直平面內從標桿CD后退2米到點G,G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H,H處測得建筑物頂端A和標桿頂端E在同一條直線上,求建筑物的高

【答案】54

【解析】試題分析:首先由ABCDEF可得出CDGABG,EFHABH,再根據相似三角形的對應邊成比例列出比例式求解即可

試題解析:解:ABBHCDBH,EFBH,,∴ABCDEF,∴CDGABG,EFHABH,∴,,∵CD=DG=EF=2m,DF=52m,FH=4m,∴,,∴,解得BD=52,∴,解得AB=54.

答:建筑物的高為54

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線分別交軸,軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形.

(1)直接寫出點A,B的坐標,并求直線AB與CD交點E的坐標;

(2)動點P從點C出發,沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點N從點A出發,沿線段AO以每秒1個單位長度的速度向終點O運動,過點P作,垂足為H,連接NP.設點P的運動時間為秒.

NPH的面積為1,求的值;

點Q是點B關于點A的對稱點,問是否有最小值,如果有,求出相應的點P的坐標;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數;并判斷線段HG、OH、BG之間的數量關系,說明理由;

(3)連結BD、DA、AE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的推理.

如圖,BE平分ABD,DE平分BDC,且α+β=90°,試說明:ABCD.

完成推理過程:

BE平分∠ABD(已知)

∴∠ABD2α(__________)

DE平分∠BDC(已知),

∴∠BDC2β (__________)

∴∠ABD+∠BDC2α2β2(α+∠β)( __________)

∵∠α+∠β90°(已知)

∴∠ABD+∠BDC180°(__________)

ABCD(____________________)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(14分)小明到某服裝商場進行社會調查,了解到該商場為了激勵營業員的工作積極性,實行“月總收入=基本工資+計件獎金”的方法,并獲得如下信息:

營業員A:月銷售件數200件,月總收入2400元;

營業員B:月銷售件數300件,月總收入2700元;

假設營業員的月基本工資為元,銷售每件服裝獎勵元.

(1)求、的值;

(2)若某營業員的月總收入不低于3100元,那么他當月至少要賣服裝多少件?

(3)商場為了多銷售服裝,對顧客推薦一種購買方式:如果購買甲3件,乙2件,丙1件共需350元;如果購買甲1件,乙2件,丙3件共需370元.某顧客想購買甲、乙、丙各一件共需多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 如圖,在△ABC中,AB=AC,點P,D分別是BC,AC邊上的點,且∠APD=∠B.

(1)求證:AC·CD=CP·BP;

(2)若AB=10,BC=12,當PDAB時,求BP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為促進我市經濟的快速發展,加快道路建設,某高速公路建設工程中需修隧道AB,如圖,在山外一點C測得BC距離為200m,∠CAB=54°,∠CBA=30°,求隧道AB的長.(參考數據:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精確到個位)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知一次函數y=﹣x+6與x,y軸分別交于A,B兩點,點C(0,n)是線段BO上一點,將△AOB沿直線AC折疊,點B剛好落在x軸負半軸上,則點C的坐標是( 。

A. (0,3) B. (0, C. (0, D. (0,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形,,,, 按如圖所示的方式放置.點,,和點分別在直線軸上,已知點,,則點的坐標是 ,點的坐標是

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视