【題目】已知二次函數y=ax2+bx+c+2的圖象如圖,頂點為(-1,0),下列結論:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正確結論的個數是( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:∵拋物線開口向上,
∴a>0,
∵對稱軸在y軸左邊,
∴b>0,
∵拋物線與y軸的交點在x軸的上方,
∴c+2>2,
∴c>0,
∴abc>0,
∴結論①不正確;
∵二次函數y=ax2+bx+c+2的圖象與x軸只有一個交點,
∴△=0,
即b2﹣4a(c+2)=0,
∴b2﹣4ac=8a>0,
∴結論②不正確;
∵對稱軸x=﹣ =﹣1,
∴b=2a,
∵b2﹣4ac=8a,
∴4a2﹣4ac=8a,
∴a=c+2,
∵c>0,
∴a>2,
∴結論③正確;
∵對稱軸是x=﹣1,而且x=0時,y>2,
∴x=﹣2時,y>2,
∴4a﹣2b+c+2>2,
∴4a﹣2b+c>0.
∴結論④正確.
綜上,可得
正確結論的個數是2個:③④.
答案為:B.
拋物線開口向上可知a>0,對稱軸在y軸左邊,根據“左同右異”法則,b>0,拋物線與y軸的交點在x軸的上方c+2>2,得c>0;由對稱軸公式,得到b=2a;4a﹣2b+c+2就是x=2時的函數值,結合圖像4a﹣2b+c+2>2,即4a﹣2b+c>0.
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,C、E是⊙O上的點, CD⊥AB,EF⊥AB,垂足分別為D、F,過點E作 EG⊥0C,垂足為G,延長EG交OA于H。
求證:
(1)HO·HF=HG·HE;
(2)FG=CD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD、MN相交與點O,FO⊥BO,OM平分∠DOF
(1)請直接寫出圖中所有與∠AON互余的角: .
(2)若∠AOC=∠FOM,求∠MOD與∠AON的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形中,
,
為
上一動點,
交
于
,過
作
交
于點
,過
作
于
,連結
.在以下四個結論中:①
;②
;③
;④
的周長為12.其中正確的結論有__________(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在銳角△ABC中,∠BAC=60,BD、CE為高,F為BC的中點,連接DE、DF、EF,則結論:①DF=EF;②AD∶AB=AE∶AC;③△DEF是等邊三角形;④BE+CD=BC;⑤當∠ABC=45時,BE=DE中,一定正確的有 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的頂點A在原點,B、C坐標分別為B(3,0),C(2,2),將△ABC向左平移1個單位后再向下平移2單位,可得到△A′B′C′.
(1)請畫出平移后的△A′B′C′的圖形;
(2)寫出△A′B′C′各個頂點的坐標;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com