【題目】在﹣3,6,﹣1中,最大的數比最小的數大( )
A.2
B.3
C.4
D.9
科目:初中數學 來源: 題型:
【題目】某市2016年參加中考的考生人數約為85000人,將85000用科學記數法表示為( )
A.8.5×104
B.8.5×105
C.0.85×104
D.0.85×105
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,AB∥CD∥EF,點M、N、P分別在AB、CD、EF上,NQ平分∠MNP.
(1)若∠AMN=60°,∠EPN=80°,分別求∠MNP、∠DNQ的度數;
(2)探求∠DNQ與∠AMN、∠EPN的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我市實施“城鄉環境綜合治理”期間,某校組織學生開展“走出校門,服務社會”的公益活動.八年級一班王浩根據本班同學參加這次活動的情況,制作了如下的統計圖表:
該班學生參加各項服務的頻數、頻率統計表:
服務類別 | 頻數 | 頻率 |
文明宣傳員 | 4 | 0.08 |
文明勸導員 | 10 | |
義務小警衛 | 8 | 0.16 |
環境小衛士 | 0.32 | |
小小活雷鋒 | 12 | 0.24 |
請根據上面的統計圖表,解答下列問題:
(1)該班參加這次公益活動的學生共有 名;
(2)請補全頻數、頻率統計表和頻數分布直方圖;
(3)若八年級共有900名學生報名參加了這次公益活動,試估計參加文明勸導的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發現,當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結DB,過點D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC=b2+
ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+
a(b﹣a)
∴b2+
ab=
c2+
a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A,B的坐標分別為(1,0)、(4,0).將△ABC沿x軸向右平移,當點C落在直線y=2x﹣6上時,線段BC掃過的面積為( )
A.4
B.8
C.16
D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車廠改進生產工藝后,每天生產的汽車比原來每天生產的汽車多6輛,那么現在15天的產量就超過了原來20天的產量.若設原來每天能生產x輛,則可列關于x的不等式為( )
A. 15x>20(x+6) B. 15(x+6)≥20x C. 15x>20( x-6) D. 15(x+6)>20x
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某養殖戶的養殖成本逐年增長,已知第一年的養殖成本為12萬元,第3年的養殖成本為17萬元.設每年平均增長的百分率為x,則下面所列方程中正確的是( )
A.12(1﹣x)2=17
B.17(1﹣x)2=12
C.17(1+x)2=12
D.12(1+x)2=17
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com