【題目】如圖1,菱形紙片ABCD的邊長為2,∠ABC=60°,將菱形ABCD沿EF,GH折疊,使得點B,D兩點重合于對角線BD上一點P(如圖2),則六邊形AEFCHG面積的最大值是( )
A.
B.
C.2﹣
D.1+
【答案】A
【解析】解:六邊形AEFCHG面積=菱形ABCD的面積﹣△EBF的面積﹣△GDH的面積.
∵菱形紙片ABCD的邊長為2,∠ABC=60°,
∴AC=2,
∴BD=2 ,
∴S菱形ABCD= ACBD=
2×2
=2
,
設AE=x,
則六邊形AEFCHG面積=2 ﹣
×(2﹣x)
(2﹣x)﹣
x
x
=﹣ x2+
x+
=﹣ (x﹣1)2+
,
∴六邊形AEFCHG面積的最大值是 .
故選A.
【考點精析】掌握二次函數的最值和菱形的性質是解答本題的根本,需要知道如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC中, AO是∠BAC的角平分線, D為 AO上一點,以 CD為一邊且在 CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE.
(2)延長BE至Q, P為BQ上一點,連接 CP、CQ使 CP=CQ=5,若 BC=6,求PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形中,
,
,
平分
,
平分
,
交
于點
,
交
于點
,
與
是否平行?為什么?
對于上述問題,小紅給出了解答過程,請你在以下解答過程的括號內填上適當的內容
解:
理由如下:
,
.
∵四邊形的內角和為360°,
∴( ① )+( ② )=180°,
∵平分
,
平分
,
.
.
又, ( ③ )
,
. ( ④ )
.( ⑤ )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場服裝部為了調動營業員的積極性,決定實行目標管理,即確定一個月銷售目標,根據目標完成的情況對營業員進行適當的獎懲.為了確定一個適當的目標,商場統計了每個營業員在某月的銷售額,統計圖如下:
請你結合統計圖和平均數、眾數和中位數解答下列問題:(結果保留整數)
(1)月銷售額在哪個值的人最多?月銷售額處于中間的是多少?月平均銷售額是多少?
(2)如果想確定一個較高的銷售目標,你認為月銷售額定為多少合適?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一種包裝盒的表面展開圖,將它圍起來可得到一個幾何體的模型.
(1)這個幾何體模型的名稱是
(2)如圖2是根據a,b,h的取值畫出的幾何體的主視圖和俯視圖(圖中實線表示的長方形),請在網格中畫出該幾何體的左視圖.
(3)若h=a+b,且a,b滿足 a2+b2﹣a﹣6b+10=0,求該幾何體的表面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以直線上一點為端點作射線
,使
.將一個直角三角板
(其中
)的直角頂點放在點
處.
(1)如圖①,若直角三角板的一邊
放在射線
上,則
____
;
(2)如圖②,將直角三角板繞點
逆時針轉動到某個位置,若
恰好平分
,則
所在的射線是否為
的平分線?請說明理由;
(3)如圖③,將含角的直角三角板
從圖①的位置開始繞點
以每秒
的速度逆時針旋轉,設旋轉角為
,旋轉的時間為
秒,在旋轉過程中是否存在三角板的一條邊與
垂直?若存在,請直接寫出此時
的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC中,∠BAC=90°,點D在BC邊上,且BD=BA,過點B畫AD的垂線交AC于點O,以O為圓心,AO為半徑畫圓.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為8,tan∠C= ,求線段AB的長,sin∠ADB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數式m2+m+4的最小值;
(2)求代數式4﹣x2+2x的最大值;
(3)某居民小區要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設AB=x(m),請問:當x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,兩個函數y=x,y=﹣x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設它與△OAB重疊部分的面積為S.
(1)求點A的坐標.
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經過點A后繼續按原方向、原速度運動,當正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com