精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是ABC的中線.

(1)用無刻度的直尺畫出ABC的高CH(保留畫圖痕跡);

(2)求ACE的面積.

【答案】(1)作圖見解析;(2)6

【解析】(1)如圖,連接BD,BD與AE交于點F,連接CF并延長到AB,則它與AB的交點即為H.

理由如下:

BD、AC是ABCD的對角線,點O是AC的中點,AE、BO是等腰ABC兩腰上的中線,AE=BO,AO=BE,AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=BAE,ABF中,∵∠FAB=FBA,FA=FB,∵∠BAC=ABC,∴∠EAC=OBC,AC=BC,EAC=OBC,FA=FB,可得AFCBFC(SAS)∴∠ACF=BCF,即CH是等腰ABC頂角平分線,所以CH是ABC的高;

(2)AC=BC=5,AB=6,CHAB,AH=AB=3,CH==4,S△ABC=ABCH=×6×4=12,AE是ABC的中線,S△ACE=S△ABC=6.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】據報道,目前我國“天河二號”超級計算機的運算速度位居全球第一,其運算速度達到了每秒338600000億次,數學338600000用科學記數法可表示為(
A.3.386×109
B.0.3386×109
C.33.86×107
D.3.386×108

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(P為AB中點)所在的直線上,得到經過點D的折痕DE.則∠DEC的大小為(
A.78°
B.75°
C.60°
D.45°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一組數據:57,10,57,5,6,這組數據的眾數和中位數分別是( )

A.107B.57C.56D.67

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=10,對角線AC=12.若過點A作AE⊥CD,垂足為E,則AE的長為(
A.9
B.
C.
D.9.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ACB和△ADE均為等邊三角形,點C、E、D在同一直線上,連接BD. 求證:CE=BD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【問題提出】

用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

【問題探究】

不妨假設能搭成m種不同的等腰三角形,為探究m與n之間的關系,我們可以先從特殊入手,通過試驗、觀察、類比、最后歸納、猜測得出結論.

【探究一】

(1)用3根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

此時,顯然能搭成一種等腰三角形.

所以,當n=3時,m=1.

(2)用4根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.

所以,當n=4時,m=0.

(3)用5根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.

所以,當n=5時,m=1.

(4)用6根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.

所以,當n=6時,m=1.

綜上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一個三角形,能搭成多少種不同的三角形?

(仿照上述探究方法,寫出解答過程,并將結果填在表②中)

(2)用8根、9根、10根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

(只需把結果填在表②中)

表②

你不妨分別用11根、12根、13根、14根相同的木棒繼續進行探究,…

【問題解決】:

用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(設n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數,把結果填在表③中)

表③

【問題應用】:

用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(寫出解答過程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.

(1)在圖1中,用尺規作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);

(2)如圖2,設∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.

①求證:OD⊥BC;

②求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】水星和太陽的平均距離約為57900000km,用科學記數法表示為__________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视