精英家教網 > 初中數學 > 題目詳情
(2010•淄博)已知關于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若這個方程有實數根,求k的取值范圍;
(2)若這個方程有一個根為1,求k的值;
(3)若以方程x2-2(k-3)x+k2-4k-1=0的兩個根為橫坐標、縱坐標的點恰在反比例函數的圖象上,求滿足條件的m的最小值.
【答案】分析:(1)若一元二次方程有實數根,則根的判別式△=b2-4ac≥0,建立關于k的不等式,求出k的取值范圍.
(2)將x=1代入方程,得到關于k的方程,求出即可,
(3)寫出兩根之積,兩根之積等于m,進而求出m的最小值.
解答:解:(1)由題意得△=[-2(k-3)]2-4×(k2-4k-1)≥0
化簡得-2k+10≥0,解得k≤5.
(2)將1代入方程,整理得k2-6k+6=0,解這個方程得,
(3)設方程x2-2(k-3)x+k2-4k-1=0的兩個根為x1,x2,
根據題意得m=x1x2.又由一元二次方程根與系數的關系得x1x2=k2-4k-1,
那么m=k2-4k-1=(k-2)2-5,所以,當k=2時m取得最小值-5.
點評:一元二次方程根的判別式和根與系數的關系,是一個綜合性的題目,也是一個難度中等的題目.總結:一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.
練習冊系列答案
相關習題

科目:初中數學 來源:2010-2011學年江蘇省南通市如皋市九年級數學新課程結束考試試卷(解析版) 題型:解答題

(2010•淄博)已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2010•淄博)已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數學 來源:2010年山東省淄博市中考數學試卷(解析版) 題型:解答題

(2010•淄博)已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《圓》(03)(解析版) 題型:選擇題

(2010•淄博)已知兩圓的半徑分別為R和r(R>r),圓心距為d.如圖,若數軸上的點A表示R-r,點B表示R+r,當兩圓外離時,表示圓心距d的點D所在的位置是( )

A.在點B右側
B.與點B重合
C.在點A和點B之間
D.在點A左側

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视