【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于C點,已知A(3,0),且M(1,
)是拋物線上另一點.
(1)求a、b的值;
(2)連結AC,設點P是y軸上任一點,若以P、A、C三點為頂點的三角形是等腰三角形,求P點的坐標;
(3)若點N是x軸正半軸上且在拋物線內的一動點(不與O、A重合),過點N作NH∥AC交拋物線的對稱軸于H點.設ON=t,△ONH的面積為S,求S與t之間的函數關系式.
【答案】(1) ;(2)P點的坐標1(0,2)或(0,
)或(0,
)或(0,
);(3)
.
【解析】
試題分析:(1)根據題意列方程組即可得到結論;
(2)在中,當x=0時.y=﹣2,得到OC=2,如圖,設P(0,m),則PC=m+2,OA=3,根據勾股定理得到AC=
=
,①當PA=CA時,則OP1=OC=2,②當PC=CA=
時,③當PC=PA時,點P在AC的垂直平分線上,根據相似三角形的性質得到P3(0,
),④當PC=CA=
時,于是得到結論;
(3)過H作HG⊥OA于G,設HN交Y軸于M,根據平行線分線段成比例定理得到OM=,求得拋物線的對稱軸為直線x=
=
,得到OG=
,求得GN=t﹣
,根據相似三角形的性質得到HG=
,于是得到結論.
試題解析:(1)把A(3,0),且M(1,)代入
得:
,解得:
;
(2)在中,當x=0時.y=﹣2,∴C(0,﹣2),∴OC=2,如圖,設P(0,m),則PC=m+2,OA=3,AC=
=
,分三種情況:
①當PA=CA時,則OP1=OC=2,∴P1(0,2);
②當PC=CA=時,即m+2=
,∴m=
﹣2,∴P2(0,
﹣2);
③當PC=PA時,點P在AC的垂直平分線上,則△AOC∽△P3EC,∴,∴P3C=
,∴m=
,∴P3(0,
),④當PC=CA=
時,m=﹣2﹣
,∴P4(0,﹣2﹣
),綜上所述,P點的坐標1(0,2)或(0,
)或(0,
)或(0,
);
(3)過H作HG⊥OA于G,設HN交Y軸于M,∵NH∥AC,∴,∴
,∴OM=
,∵拋物線的對稱軸為直線x=
=
,∴OG=
,∴GN=t﹣
,∵GH∥OC,∴△NGH∽△NOM,∴
,即
,∴HG=
,∴S=
ONGH=
t(
t﹣
)=
t2﹣
t(0<t<3).
(3)設直線AC的解析式為y=kx+b(k≠0)由題意得:,解得:
,b=-2,∴
.
由(1)得拋物線對應的函數表達式為=
,設AC與拋物線y=
的對稱軸x=1交于點F,直線x=1與x軸交于E點,則F(1,
),E(1,0).
①當0<t<1時,EN=1-t,由得,
,∴EH=
,∴
=
ONEH=
,即
;
②當1≤t≤3時,EN=t-1,由得,
,∴EH=
,∴
=
ONEH=
,即
;
∴ .
科目:初中數學 來源: 題型:
【題目】某校為提高學生身體素質,決定開展足球、籃球、臺球、乒乓球四項課外體育活動,并要求學生必須并且只能選擇一項.為了解選擇各種體育活動項目的學生人數,隨機抽取了部分學生進行調查,并繪制出以下兩幅不完整的統計圖.請根據統計圖回答下列問題.(要求寫出簡要的解答過程)
(1)這次活動一共調查了多少名學生?
(2)補全條形統計圖.
(3)若該學?側藬凳1300人,請估計選擇籃球項目的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,點F為AB延長線上一點,點E在BC上,BE=BF,連接AE,EF和CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊BC延長線上一點,連結DE,過頂點B作BF⊥DE,垂足為F,BF分別交AC于H,交BC于G.
(1)求證:BG=DE;
(2)若點G為CD的中點,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖的正方形網格中,每一個小正方形的邊長為1.格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(﹣4,6),(﹣1,4).
(1)請在圖中的網格平面內建立平面直角坐標系;
(2)請畫出△ABC關于x軸對稱的△A1B1C1;
(3)請在y軸上求作一點P,使△PB1C的周長最小,并寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過銳角△ABC的頂點A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延長線于點F.在AF上取點M,使得AM=AF,連接CM并延長交直線DE于點H.若AC=2,△AMH的面積是
,則
的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】十八大報告指出:“建設生態文明,是關系人民福祉、關乎民族未來的長遠大計”,這些年黨和政府在生態文明的發展進程上持續推進,在“十一五”期間,中國減少二氧化碳排放1 460 000 000噸,贏得國際社會廣泛贊譽.將1 460 000 000用科學記數法表示為( )
A.146×107
B.1.46×107
C.1.46×109
D.1.46×1010
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,直線 與x軸相交于點A,與y軸相交于點B.
(1)直接寫出A點的坐標;
(2)當x 時,y≤4;
(3)過B點作直線BP與x軸相交于P,若OP=2OA時,求ΔABP的面積。
(4)在y軸上是否存在E點,使得ΔABE為等腰三角形,若存在,直接寫出滿足條件的E點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com