【題目】已知有理數a、b在數軸上的對應點如圖所示.
(1)已知a=–2.3,b=0.4,計算|a+b|–|a|–|1–b|的值;
(2)已知有理數a、b,計算|a+b|–|a|–|1–b|的值.
科目:初中數學 來源: 題型:
【題目】為了解決小區停車難的問題,某小區準備新建50個停車位,已知新建1個地上停車位和1個地下停車位需0.5萬元,新建3個地上停車位和2個地下停車位需1.1萬元.
(1)該小區新建1個地上停車位和1個地下停車位各需多少萬元?
(2)根據實際情況,該小區新建地上停車位不多于33個,且預計投資金額不超過11萬元,共有幾種建造方式?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關系,并證明你的結論;
(2)若OA=5,OD=1,求線段AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】加工一根軸,圖上標明的直徑加工要求是(單位:mm),則這種零件的標準尺寸是________mm,合格產品的最大直徑是________mm,最小直徑是________mm.如果加工成的軸的直徑是44.8毫米,它是________(填“合格”或“不合格”)產品.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】八年級某班同學為了了解2012年某居委會家庭月均用水情況,隨機調查了該居委會部分家庭,并將調查數據進行如下調整:
月均用水量x(t) | 頻數(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | a | 0.24 |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | 0.08 |
25<x≤30 | 2 | 0.04 |
請解答以下問題:
(1)頻數分布表中a= ,把頻數分布直方圖補充完整;
(2)求該居委會用水量不超過15t的家庭占被調查家庭總數的百分比;
(3)若該居委會有1000戶家庭,根據調查數據估計,該小區月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料并填空: 在體育比賽中,我們常常會遇到計算比賽場次的問題,這時我們可以借助數線段的方法來計算.比如在一個小組中有 4 個隊,進行單循環比賽,我們要計算總的比賽場次,我們就 設這四個隊分別為 A、B、C、D,并把它們標在同一條線段上,如下圖:
因為單循環比賽就是每兩個隊之間都要比賽一場,這就相當于,在上述圖形中四個點連接線段,按一定規律得到的線段有:
AB,AC,AD…………3 條
BC,BD………………2 條
CD……………………1 條
總的線段條數是 3+2+1=6
所以可知 4 個隊進行單循環比賽共比賽六場.
(1).類比上述想法,若一個小組有 6 個隊,進行單循環比賽,則總的比賽場次是_____
(2).類比上述想法,若一個小組有 n 個隊,進行單循環比賽,則總的比賽場次是_____
(3).我們知道 2006 年世界杯共有 32 支代表隊參加比賽,共分成 8 個小組,每組 4 個 代表隊.第一階段每個小組進行單循環比賽.則第一階段共 需 要 進 行_______ 場比賽.
(4).若分成 m 個小組,每個小組有 n 個隊,第一階段每個小組進行單循環比賽.則第 一階段共需要進行_____________場比賽.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發,沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早 小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發地的路程y(千米)與所用時間x(小時)的函數圖象如圖所示,請結合圖象信息解答下列問題:
(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數關系式;
(3)兩車出發后經過多長時間相距90千米的路程?直接寫出答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各多少萬元.
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發,沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數關系式;
(4)在(3)的條件下,當點P在邊AB上運動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com