精英家教網 > 初中數學 > 題目詳情

【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分數m進行分組統計,結果如表所示:

組號

分組

頻數

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2


(1)求a的值;
(2)若用扇形圖來描述,求分數在8≤m<9內所對應的扇形圖的圓心角大小;
(3)將在第一組內的兩名選手記為:A1、A2 , 在第四組內的兩名選手記為:B1、B2 , 從第一組和第四組中隨機選取2名選手進行調研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結果).

【答案】
(1)解:由題意可得,

a=20﹣2﹣7﹣2=9,

即a的值是9


(2)解:由題意可得,

分數在8≤m<9內所對應的扇形圖的圓心角為:360°× =162°


(3)解:由題意可得,所有的可能性如下圖所示,

故第一組至少有1名選手被選中的概率是: = ,

即第一組至少有1名選手被選中的概率是


【解析】(1)根據被調查人數為20和表格中的數據可以求得a的值;(2)根據表格中的數據可以得到分數在8≤m<9內所對應的扇形圖的圓心角大;(3)根據題意可以寫出所有的可能性,從而可以得到第一組至少有1名選手被選中的概率.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】初中學生帶手機上學,給學生帶來了方便,同時也帶來了一些負面影響.針對這種現象,某校九年級數學興趣小組的同學隨機調查了若干名家長對“初中學生帶手機上學”現象的看法,統計整理并制作了如圖的統計圖:
(1)這次調查的家長總人數為人,表示“無所謂”的家長人數為人;
(2)隨機抽查一個接受調查的家長,恰好抽到“很贊同”的家長的概率是;
(3)求扇形統計圖中表示“不贊同”的扇形的圓心角度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線AC上一點,且CE=CD,過點E作EF⊥AC交AD于點F,連接BE.
(1)求證:DF=AE;
(2)當AB=2時,求BE2的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D AB的中點.

(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.

若點 Q 的運動速度與點 P 的運動速度相等,經過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD △CQP 全等?

(2)若點 Q 以②中的運動速度從點 C 出發,點 P 以原來的運動速度從點 B 同時出發,都逆時針沿△ABC 三邊運動,則經過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學九年級數學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結果精確到0.1米)
(參考數據:sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線y=﹣ x+1與y軸交于點D.

(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知上的一點,按下列要求進行作圖.

1的平分線.

2上取一點,使得.

3愛動腦筋的小剛經過仔細觀察后,進行如下操作在邊上取一點,使得,這時他發現之間存在一定的數量關系,請寫出 的數量關系,并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视