【題目】如圖,從熱氣球C上測得兩建筑物A,B底部的俯角分別為30°和60度.如果這時氣球的高度CD為90米.且點A,D,B在同一直線上,求建筑物A,B間的距離.
【答案】解:由已知,得∠ECA=30°,∠FCB=60°,CD=90,
EF∥AB,CD⊥AB于點D.
∴∠A=∠ECA=30°,∠B=∠FCB=60°.
在Rt△ACD中,∠CDA=90°,tanA= ,
∴AD= =90×
=90
.
在Rt△BCD中,∠CDB=90°,tanB= ,
∴DB= =30
.
∴AB=AD+BD=90 +30
=120
.
答:建筑物A、B間的距離為120 米
【解析】添加輔助線,將相關的問題轉化到直角三角形中求解。過點C作CD⊥AB于點D,根據已知易求得∠A、∠B的度數,再在Rt△ACD和Rt△BCD中,分別求出DB、AD的長,就可以求出AB的長。
【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法),以及對關于仰角俯角問題的理解,了解仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.
科目:初中數學 來源: 題型:
【題目】定義:P、Q分別是兩條線段a,b上任意一點,線段PQ長度的最小值叫做線段a與線段b的距離.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標系中四點.
(1)根據上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離為;當m=5,n=2時,如圖2,線段BC與線段OA的距離(即線段AB的長)為;
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數解析式.
(3)當m值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M,點D(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m值,使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖甲是一個大長方形剪去一個小長方形后形成的圖形,已知動點 P 以每秒 2cm 的速度沿圖甲的邊框按從 B→C→D→E→F→A 的路徑移動,相應的△ABP 的面積 S 與時間 t 之間 的關系如圖乙中的圖象表示.若 AB=6cm,則 b=_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經過的某書店,買到書后繼續去學校.以下是他本次上學所用的時間與路程的關系示意圖.根據圖中提供的信息回答下列問題:
(1)小明家到學校的路程是 米.
(2)小明在書店停留了 分鐘.
(3)本次上學途中,小明一共行駛了 米.一共用了 分鐘.
(4)我們認為騎單車的速度超過 300 米/分就超過了安全限度.問:在整個上學途中哪個時間段小明的騎車速度最快,最快速度為多少,在安全限度內嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠BAC=120°,以BC為邊向形外作等邊三角形△BCD,把△ABD繞著點D按順時針方向旋轉60°后得到△ECD,若AB=5,AC=3,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某飲料廠開發了A,B兩種新型飲料,主要原料均為甲和乙,每瓶飲料中甲、乙的含量如下表所示.現用甲原料和乙原料各2800克進行試生產,計劃生產A,B兩種飲料共100瓶.設生產A種飲料x瓶,解析下列問題:
原料名稱 | 甲 | 乙 |
A | 20克 | 40克 |
B | 30克 | 20克 |
(1)有幾種符合題意的生產方案寫出解析過程;
(2)如果A種飲料每瓶的成本為2.60元,B種飲料每瓶的成本為2.80元,這兩種飲料成本總額為y元,請寫出y與x之間的關系式,并說明x取何值會使成本總額最低?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時針旋轉45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
(3)如圖③,在B1C上取一點E,連接BE、P1E,設BC=1,當BE⊥P1B時,求△P1BE面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com