【題目】如圖,平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別是OB,OD的中點.
(1)試說明四邊形AECF是平行四邊形.
(2)若AC=8,AB=6.若AC⊥AB,求線段BD的長.
【答案】(1)見解析;(2)4
【解析】
(1)在平行四邊形ABCD中,AC與BD互相平分,OA=OC,OB=OD,又E,F為OB,OD的中點,所以OE=OF,所以AC與EF互相平分,所以四邊形AECF為平行四邊形;
(2)首先根據平行四邊形的性質可得AO=CO,BO=DO,再利用勾股定理計算出BO的長,進而可得BD的長.
(1)∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵E,F為OB,OD的中點,
∴OE=OF,
∴AC與EF互相平分,
∴四邊形AECF為平行四邊形;
(2)∵四邊形ABCD是平行四邊形,
∴AO=CO,BO=DO,
∵AC=8,
∴AO=4,
∵AB=6,AC⊥AB,
∴,
∴.
科目:初中數學 來源: 題型:
【題目】如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若⊙O的半徑為4,求圖中陰影部分的面積(結果保留π和根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節能燈.已知這種節能燈的成本價為每件元,出廠價為每件
元,每月銷售量
(件)與銷售單價
(元)之間的關系近似滿足一次函數:
.
(1)李明在開始創業的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規定,這種節能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于
元,那么政府為他承擔的總差價最少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某初中學校餐廳為了解學生對早餐的要求,隨即抽樣調查了該校的部分學生,并根據其中兩個單選問題的調查結果,繪制了如下尚不完整的統計圖表.
學生能接受的早餐價格統計表
價格分組(單位:元) | 頻數 | 頻率 |
0<x≤2 | 60 | 0.15 |
2<x≤4 | 180 | c |
4<x≤6 | 92 | 0.23 |
6<x≤8 | a | 0.12 |
x>8 | 20 | 0.05 |
合計 | b | 1 |
根據以上信息解答下列問題:
(1)統計表中,a= ,b= ,c= .
(2)扇形統計圖中,m的值為 ,“甜”所對應的圓心角的度數是 .
(3)該餐廳計劃每天提供早餐2000份,其中咸味大約準備多少份較好?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為所在圓的圓心,∠AOB=90°,點P在
上運動(不與點A,B重合),AP交OB延長線于點C,CD⊥OP于點D.若OB=2BC=2,則PD的長是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,則經過
三點的圓弧所在圓的圓心
的坐標為__________;點
坐標為
,連接
,直線
與
的位置關系是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=2x與反比例函數y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最大值為
,則k的值為( 。
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(A在B的左側),與y軸交于點C(0,﹣3),對稱軸為x=1,點D與C關于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點D的坐標;
(2)點P是拋物線上的一點,當△ABP的面積是8時,求出點P的坐標;
(3)點M為直線AD下方拋物線上一動點,設點M的橫坐標為m,當m為何值時,△ADM的面積最大?并求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一條公路環繞山腳的部分是一段圓弧形狀(O為圓心),過A,B兩點的切線交于點C,測得∠C=120°,A,B兩點之間的距離為60m,則這段公路AB的長度是( )
A.10πmB.20πmC.10πmD.60m
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com