【題目】在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分線.
(1)求∠DCE的度數.
(2)若∠CEF=135°,求證:EF∥BC.
【答案】(1)15°(2)證明見解析
【解析】
(1)由圖示知∠DCE=∠DCB-∠ECB,由∠B=30°,CD⊥AB于D,利用內角和定理,求出∠DCB的度數,又由角平分線定義得∠ECB=∠ACB,則∠DCE的度數可求;(2)根據∠CEF+∠ECB=180°,由同旁內角互補,兩直線平行可以證明EF∥BC.
(1)∵∠B=30°,CD⊥AB于D,
∴∠DCB=90°-∠B=60°,
∵CE平分∠ACB,∠ACB=90°,
∴∠ECB=∠ACB=45°,
∴∠DCE=∠DCB-∠ECB=60°-45°=15°;
(2)∵∠CEF=135°,∠ECB=∠ACB=45°,
∴∠CEF+∠ECB=180°,
∴EF∥BC.
科目:初中數學 來源: 題型:
【題目】之前我們學習了一元一次方程的解法,下面是一道解一元一次方程的題:
解方程﹣
=1
老師說:這是一道含有分母的一元一次方程,我們可以根據等式的性質,可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說的方法進行了解答,小明同學的解題過程如下:
解:方程兩邊同時乘以6,得×6﹣
×6=1…………①
去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②
去括號,得:4﹣6x﹣3x+15=1……………③
移項,得:﹣6x﹣3x=1﹣4﹣15…………④
合并同類項,得﹣9x=﹣18……………⑤
系數化1,得:x=2………………⑥
上述小明的解題過程從第 步開始出現錯誤,錯誤的原因是 .
請幫小明改正錯誤,寫出完整的解題過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】仔細觀察下面的日歷,回答下列問題:
(1)任意用正方形框圈出四個日期,如果正方形框中的第一個數(左上角的數)為,用代數式表示正方形框中的四個數的和;
(2)若將正方形框上下左右移動,可框住另外的四個數,這四個數的和能等于嗎?如果能,依次寫出這四個數;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強公民的節水意識,合理利用水資源,某市采用價格調控的手段達到節水的目的,該市自來水收費的價目表如下表(注:水費按月份結算,表示立方米):請根據上表的內容解答下列問題:
(1)填空:若該戶居民月份用水
,則應收水費___________元;
(2)若該戶居民月份用水
(其中
),則應收水費多少元?
價目表
每月用水量 | 單價 |
不超過6 | 2元/ |
超出6 | 4元/ |
超出10 | 8元/ |
(3)若該戶居民、
兩個月共用水
(
月份用水量超過了
月份),設
月份用水
,求該戶居民
、
兩個月共交水費多少元?(答案可含有
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知是等邊三角形,D是BC邊上的一個動點
點D不與B,C重合
是以AD為邊的等邊三角形,過點F作BC的平行線交射線AC于點E,連接BF.
如圖1,求證:
≌
;
請判斷圖1中四邊形BCEF的形狀,并說明理由;
若D點在BC邊的延長線上,如圖2,其它條件不變,請問
中結論還成立嗎?如果成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】公園有一塊正方形的空地,后來從這塊空地上劃出部分區域栽種鮮花(如圖),原空地一邊減少了1m,另一邊減少了2m,剩余空地的面積為18m2 , 求原正方形空地的邊長.設原正方形的空地的邊長為xm,則可列方程為( 。
A.(x+1)(x+2)=18
B.x2﹣3x+16=0
C.(x﹣1)(x﹣2)=18
D.x2+3x+16=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于_______.
【答案】10或6
【解析】試題解析:根據題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據勾股定理得:BD==8,CD=
=2,
此時BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根據勾股定理得:BD==8,CD=
=2,
此時BC=BD-CD=8-2=6,
則BC的長為6或10.
【題型】填空題
【結束】
12
【題目】在平面直角坐標系中,已知一次函數y=2x+1的圖象經過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某種子商店銷售“黃金一號”玉米種子,為惠民促銷,推出兩種銷售方案供采購者選擇.
方案一:每千克種子價格為4元,均不打折;
方案二:購買3千克以內(含3千克)的價格為每千克5元,若一次購買超過3千克,則超出部分的種子打七折.
(1)請分別求出方案一、方案二中購買的種子數量x(千克)與付款金額y(元)之間的函數關系式;
(2)若你去購買一定量的種子,你會怎樣選擇方案?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知∠DAB=∠DCB,AF平分∠DAB,CE平分∠DCB,∠FCE=∠CEB,試說明:AF∥CE。
解:(1)因為∠DAB=∠DCB( ),
又AF平分∠DAB,
所以_____=∠DAB( ),
又因為CE平分∠DCB,
所以∠FCE=_____( ),
所以∠FAE=∠FCE。
因為∠FCE=∠CEB,
所以______=________
所以AF∥CE( )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com