【題目】已知a、b可以取﹣2、﹣1、1、2中任意一個值(a≠b),則直線y=ax+b的圖象不經過第四象限的概率是 .
科目:初中數學 來源: 題型:
【題目】綜合與實踐:
問題情境:
在數學綜合與實踐課上,張老師啟示大家利用直線、線段以及點的運動變換進行探究活動.變換條件如下:如圖 1,直線 AB,AC,BC 兩兩相交于 A,B,C 三點,得知△ABC是等邊三角形,點 E 是直線 AC 上一動點(點 E 不與點 A,C 重合),點 F 在直線 BC上,連接 BE,EF,使 EF=BE.
獨立思考:
(1)張老師首先提出了這樣一個問題:如圖 1,當E是線段 AC 的中點時,確定線段 AE與 CF 的數量關系,請你直接寫出結論:AE____ CF(填“>” “<”或“=”).
提出問題:
(2)“奮斗”小組受此問題的啟發,提出問題:若點E是線段 AC 上的任意一點,其他條件不變,(1)中的結論是否成立?該小組認為結論仍然成立,理由如下:如圖 2,過點 E作 ED∥BC,交 AB 于點 D. (請你補充完整證明過程)
拓展延伸:
(3)“縝密”小組提出的問題是:動點E的運動位置如圖3,圖4所示,其他條件不變,根據題意補全圖形,并判斷線段AE與CF的數量關系是否發生變化? 請你選擇其中一種予以證明.
(4)“愛心”小組提出的問題是:若等邊△ABC 的邊長為 ,AE=1,則BF 的長為__________.(請你直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.試判斷線段AB與DE的數量關系和位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線經過點A(
,0),B(
,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數;
(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料
小明遇到這樣一個問題:求計算所得多項式的一次項系數.
小明想通過計算所得的多項式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對簡潔的方法.
他決定從簡單情況開始,先找所得多項式中的一次項系數,通過觀察發現:
也就是說,只需用中的一次項系數1乘以
中的常數項3,再用
中的常數項2乘以
中的一次項系數2,兩個積相加
,即可得到一次項系數.
延續上面的方法,求計算所得多項式的一次項系數,可以先用
的一次項系數1,
的常數項3,
的常數項4,相乘得到12;再用
的一次項系數2,
的常數項2,
的常數項4,相乘得到16;然后用
的一次項系數3,
的常數項2
的常數項3,相乘得到18.最后將12,16,18相加,得到的一次項系數為46.
參考小明思考問題的方法,解決下列問題:
(1)計算所得多項式的一次項系數為____________________.
(2)計算所得多項式的一次項系數為_____________.
(3)若是
的一個因式,求
、
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點分別為A(2,3)、B(4,2)、C(﹣2,﹣3)
(1)寫出A點關于x軸對稱的點的坐標 ;寫出B點關于y軸對稱的點的坐標 .
(2)請在圖中作出△ABC關于x軸對稱的△DEF(A、B、C的對應點分別是D、E、F);
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6.
(1)求函數y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點C,在第一象限內,求反比例函數y=的圖象上一點P,使得S△POC=9.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AC上取點B,在其同一側作兩個等邊三角形△ABD 和△BCE ,連接AE,CD與GF,下列結論正確的有( )
① AE DC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
A.①②④B.①③⑤C.①③④⑤D.①②③④⑤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com