(2013年四川資陽9分)釣魚島歷來是中國領土,以它為圓心在周圍12海里范圍內均屬于禁區,不允許它國船只進入,如圖,今有一中國海監船在位于釣魚島A正南方距島60海里的B處海域巡邏,值班人員發現在釣魚島的正西方向52海里的C處有一艘日本漁船,正以9節的速度沿正東方向駛向釣魚島,中方立即向日本漁船發出警告,并沿北偏西30°的方向以12節的速度前往攔截,期間多次發出警告,2小時候海監船到達D處,與此同時日本漁船到達E處,此時海監船再次發出嚴重警告.
(1)當日本漁船受到嚴重警告信號后,必須沿北偏東轉向多少度航行,才能恰好避免進入釣魚島12海里禁區?
(2)當日本漁船不聽嚴重警告信號,仍按原速度,原方向繼續前進,那么海監船必須盡快到達距島12海里,且位于線段AC上的F處強制攔截漁船,問海監船能否比日本漁船先到達F處?(注:①中國海監船的最大航速為18節,1節=1海里/小時;②參考數據:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,
≈1.7)
解:(1)過點E作圓A的切線EN,連接AN,則AN⊥EN,
由題意得,CE=9×2=18海里,
則AE=AC﹣CE=52﹣18=34海里,
∵,
∴∠AEN=20.5°!唷螻EM=69.5°。
∴必須沿北偏東至少轉向69.5°航行,才能恰好避免進入釣魚島12海里禁區。
(2)過點D作DH⊥AB于點H,
由題意得,BD=2×12=24海里,
在Rt△DBH中,
DH=BD=12海里,BH=12
海里,
∵AF=12海里,∴DH=AF!郉F⊥AF。
此時海監船以最大航速行駛,
海監船到達點F的時間為:(小時);
漁船到達點F的時間為:(小時)。
∵2.2<2.4,∴海監船比日本漁船先到達F處。
【解析】(1)過點E作圓A的切線EN,求出∠AEN的度數即可得出答案。
(2)分別求出漁船、海監船到達點F的時間,然后比較可作出判斷。
考點:解直角三角形的應用(方向角問題),銳角三角函數定義。
科目:初中數學 來源:2013年初中畢業升學考試(四川資陽卷)數學(解析版) 題型:解答題
(2013年四川資陽11分)在一個邊長為a(單位:cm)的正方形ABCD中,點E、M分別是線段AC,CD上的動點,連結DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.
(1)如圖1,當點M與點C重合,求證:DF=MN;
(2)如圖2,假設點M從點C出發,以1cm/s的速度沿CD向點D運動,點E同時從點A出發,以cm/s速度沿AC向點C運動,運動時間為t(t>0);
①判斷命題“當點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由.
②連結FM、FN,△MNF能否為等腰三角形?若能,請寫出a,t之間的關系;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業升學考試(四川資陽卷)數學(解析版) 題型:解答題
(2013年四川資陽9分)如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線(a≠0,x>0)分別交于D、E兩點.
(1)若點D的坐標為(4,1),點E的坐標為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當m為何值時,直線l與雙曲線有且只有一個交點?
(2)假設點A的坐標為(a,0),點B的坐標為(0,b),點D為線段AB的n等分點,請直接寫出b的值.
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業升學考試(四川資陽卷)數學(解析版) 題型:解答題
(2013年四川資陽8分)在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結CD.
(1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點D與圓心O不重合,∠BAC=25°,請直接寫出∠DCA的度數.
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業升學考試(四川資陽卷)數學(解析版) 題型:解答題
(2013年四川資陽8分)在關于x,y的二元一次方程組中.
(1)若a=3.求方程組的解;
(2)若S=a(3x+y),當a為何值時,S有最值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com