【題目】如圖,在平行四邊形ABCD中,CE⊥BC交AD于點E,連接BE,點F是BE上一點,連接CF.
(1)如圖1,若∠ECD=30°,BC=4,DC=2,求tan∠CBE的值;
(2)如圖2,若BC=EC,過點E作EM⊥CF,交CF延長線于點M,延長ME、CD相交于點G,連接BG交CM于點N且CM=MG,
①在射線GM上是否存在一點P,使得△BCP≌△ECG?若存在,請指出點P的位置并證明這對全等三角形;若沒有,請說明理由.
②求證:EG=2MN.
【答案】(1);(2)①詳見解析;②詳見解析.
【解析】
(1)由平行四邊形的性質和已知條件得出∠BCE=∠CED=90°,由直角三角形的性質得出DE=CD=1,CE=
,由三角函數定義即可得出結果;
(2)①由等腰直角三角形的性質得出∠MCG=∠MGC=45°,由線段垂直平分線的性質得出CP=CG,得出∠CPM=∠CGM=45°,求出∠PCG=90°,得出∠BCP=∠ECG,由SAS證明△BCP≌△ECG即可;
②由全等三角形的性質得出BP=EG,∠BPC=∠EGC=45°,得出∠BPG=90°,證出BP∥MN,得出BN=GN,MN是△PBG的中位線,由三角形中位線定理得出BP=2MN,即可得出結論.
(1)解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵CE⊥BC,
∴CE⊥AD,
∴∠BCE=∠CED=90°,
∵∠ECD=30°,DC=2,
∴DE=CD=1,
∴CE=,
∴tan∠CBE=;
(2)①解:在射線GM上存在一點P,MP=MG時,△BCP≌△ECG;理由如下:
如圖2所示:
∵CM=MG,
∴△CMG是等腰直角三角形,
∴∠MCG=∠MGC=45°,
∵MP=MG,EM⊥CF,
∴CP=CG,
∴∠CPM=∠CGM=45°,
∴∠PCG=90°,
∴CP⊥CG,
∵∠BCE=∠PCG=90°,
∴∠BCP=∠ECG,
在△BCP和△ECG中,
,
∴△BCP≌△ECG(SAS);
②證明:由①得:△BCP≌△ECG,
∴BP=EG,∠BPC=∠EGC=45°,
∴∠BPG=90°,
∴BP∥MN,
∵PM=GM,
∴BN=GN,
∴MN是△PBG的中位線,
∴BP=2MN,
∴EG=2MN
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點,E為AB上一個動點,將△ABC沿直線DE折疊,A,C的對應點分別為,
,
交BC于點F,若△BEF為直角三角形,則BE的長度為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖直線a,b都與直線m垂直,垂足分別為M、N,MN=1,等腰直角△ABC的斜邊,AB在直線m上,AB=2,且點B位于點M處,將等腰直角△ABC沿直線m向右平移,直到點A與點N重合為止,記點B平移平移的距離為x,等腰直角△ABC的邊位于直線a,b之間部分的長度和為y,則y關于x的函數圖象大致為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B在反比例函數y=(x>0)的圖象上,點C,D在反比例函數y=
(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為
,則k的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=與x軸y軸分別交于A、C兩點,以AC為對角線作第一個矩形ABCO,對角線交點為A1,再以CA1為對角線作第二個矩形A1B1CO1,對角線交點為A2,同法作第三個矩形A2B2CO2對角線交點為A3,…以此類推,則第2019個矩形對角線交點A2019的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,BM,DN分別平分∠ABC,∠CDA,沿BP折疊,點A恰好落在BM上的點E處,延長PE交DN于點F沿DQ折疊,點C恰好落在DN上的點G處,延長QG交BM于點H,若四邊形EFGH恰好是正方形,且邊長為1,則矩形ABCD的面積為____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com