精英家教網 > 初中數學 > 題目詳情
如圖,已知等邊三角形ABC的邊長為2,AD是BC邊上的高.
(1)在△ABC內部作一個矩形EFGH(如圖①),其中E、H分別在邊AB、AC上,FG在邊BC上.
①設矩形的一邊FG=x,那么EF=
 
;(用含有x的代數式表示)精英家教網
②設矩形的面積為y,當x取何值時,y的值最大,最大值是多少?
(2)當矩形EFGH面積最大時,請在圖②中畫出此時點E的位置.(要求尺規作圖,保留作圖痕跡,并簡要說明確定點E的方法)
分析:(1)①根據等邊三角形的性質及已知可求得BD的長,再根據三角函數不難求得EF的長;
②面積=長×寬,那么就可以表示為關于x的二次函數,得出最值即可.
(2)由②得,FG=1時矩形面積最大,此時,BF=0.5,那么BE=1,那么以B為圓心,BD為半徑畫弧交AB于點E即可.
解答:解:(1)①設FG=x,那么FD=
x
2

∵BC=2,
∴BD=1.
∴BF=1-
x
2

∵∠B=60°,∠EFB=90°,
∴EF=
3
-
3
2
x.
3
-
3
2
x.(2分)

y=FG•EF=x(
3
-
3
2
x)=-
3
2
x2+
3
x
(6分)精英家教網
=-
3
2
(x-1)2+
3
2
.(7分)
當x=1時,y有最大值,且最大值為
3
2
.(8分)

(2)畫法:以B為圓心,BD長為半徑畫弧,交AB于點E,則點E即為所求(10分)
畫圖正確(12分)
點評:此題考查相似三角形的判定,等邊三角形的性質及二次函數的最值等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知等邊三角形ABC中,點D,E,F分別為邊AB,AC,BC的中點,M為直線BC上一動點,△DMN為等邊三角形(點M的位置改變時,△DMN也隨之整體移動).
(1)如圖1,當點M在點B左側時,請你判斷EN與MF有怎樣的數量關系?點F是否在直線NE上?都請直接寫出結論,不必證明或說明理由;
(2)如圖2,當點M在BC上時,其它條件不變,(1)的結論中EN與MF的數量關系是否仍然成立?若成立,請利用圖2證明;若不成立,請說明理由;
(3)若點M在點C右側時,請你在圖3中畫出相應的圖形,并判斷(1)的結論中EN與MF的數量關系是否仍然成立?若成立,請直接寫出結論,不必證明或說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

23、如圖,已知等邊三角形ABC,在AB上取點D,在AC上取點E,使得AD=AE,作等邊三角形PCD,QAE和RAB,求證:P、Q、R是等邊三角形的三個頂點.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內,點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.
(1)猜測直線BE和直線AC的位置關系,并證明你的猜想.
(2)證明:△BEF∽△ABC,并求出相似比.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知等邊三角形△AEC,以AC為對角線做正方形ABCD(點B在△AEC內,點D在△AEC外).連接EB,過E作EF⊥AB,交AB的延長線為F.請猜測直線BE和直線AC的位置關系,并證明你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知等邊三角形ABC的邊長為10,點P、Q分別為邊AB、AC上的一個動點,點P從點B出發以1cm/s的速度向點A運動,點Q從點C出發以2cm/s的速度向點A運動,連接PQ,以Q為旋轉中心,將線段PQ按逆時針方向旋轉60°得線段QD,若點P、Q同時出發,則當運動
10
3
10
3
s時,點D恰好落在BC邊上.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视