【題目】將一塊長18米,寬15米的矩形荒地修建成一個花園(陰影部分)所占的面積為原來荒地面積的三分之二.(精確到0.1m)
(1)設計方案1(如圖1)花園中修兩條互相垂直且寬度相等的小路.
(2)設計方案2(如圖2)花園中每個角的扇形都相同.
以上兩種方案是否都能符合條件?若能,請計算出圖1中的小路的寬和圖2中扇形的半徑;若不能符合條件,請說明理由.
【答案】都能.小路的寬約為6.6m;扇形半徑約為7.6m.
【解析】試題分析:(1)設小路寬為xm,根據陰影部分所占的面積為矩形面積的三分之二.列一元二次方程,若此方程有解,說明此方案符合條件,解此方程求解,否則不符合條件;(2)設扇形半徑為rm,因為每個角的扇形合起來是一個圓,建立此圓的面積等于矩形面積的三分之二.列一元二次方程,若此方程有解,說明此方案符合條件,解此方程求解,否則不符合條件;
試題解析:(1)設小路寬為x,根據陰影部分所占的面積為矩形面積的三分之二.列一元二次方程,即18x+16x-x2=×18×15,整理:x2-34x+180=0,解這個方程,得x=
,x=
不符合題意舍去,即 x=
≈6.6.所以小路的寬約為6.6m;(2)設扇形半徑為r,因為每個角的扇形合起來是一個圓,建立此圓的面積等于矩形面積的三分之二.列一元二次方程,即3.14r2=
×18×15,解得r2≈57.32,負值舍去,所以r≈7.6.所以扇形半徑約為7.6m.
科目:初中數學 來源: 題型:
【題目】為弘揚中華民族傳統美德,增強少先隊員的服務意識和奉獻意識,2017年3月5日全國第54個“學雷鋒日”暨第18個“中國青年志愿者服務日”之際,某校倡導學生們參加“學雷鋒”義務勞動. 王校長為了解同學們的勞動情況(全體學生的勞動時間都大于0.5小時),隨機調查了若干名學生某天內義務勞動的時間,并根據調查的數據繪制成如圖1所示的不完整的頻數分布直方圖(注:0.5~1小時不包括0.5小時,包括1小時)和如圖2所示的扇形統計圖,已知勞動時間在0.5~1小時的學生人數比勞動時間在1~1.5小時的學生人數少2.
圖1 圖2
(1)求頻數分布直方圖中a,b的值;
(2)補全頻數分布直方圖;
(3)求勞動時間在2~2.5小時內的學生人數所對的扇形的圓心角的度數;
(4)若該校有1000名學生,義務勞動2小時以上的學生會獲得學校的獎品,請你估計該校
有多少名學生獲得了獎品?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O中,弦AB=AC,點P是∠BAC所對弧上一動點,連接PA,PB.
(1)如圖①,把△ABP繞點A逆時針旋轉到△ACQ,連接PC,求證:∠ACP+∠ACQ=180°;
(2)如圖②,若∠BAC=60°,試探究PA、PB、PC之間的關系.
(3)若∠BAC=120°時,(2)中的結論是否成立?若是,請證明;若不是,請直接寫出它們之間的數量關系,不需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線AB交x軸于點A(4 ,0),交y軸于點B(0 ,4),
(1)如圖,若C的坐標為(-1, ,0),且AH⊥BC于點H,AH交OB于點P,試求點P的坐標;
(2)在(1)的條件下,如圖2,連接OH,求證:∠OHP=45°;
(3)如圖3,若點D為AB的中點,點M為y軸正半軸上一動點,連結MD,過點D作DN⊥DM交x軸于N點,當M點在y軸正半軸上運動的過程中,式子的值是否發生改變?如發生改變,求出該式子的值的變化范圍;若不改變,求該式子的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=2AD,點 E、F分別是AB、CD的中點,過點A作AG∥BD,交CB的延長線于點G.
(1)求證:四邊形DEBF是菱形;
(2)請判斷四邊形AGBD是什么特殊四邊形?并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B分別是x軸上位于原點左右兩側的兩點,點P(2,p)在第一象限內,直線PA交y軸與點C(0,2),直線PB交y軸與點D,且S△AOP=4,
(1)求S△COP;
(2)求點A的坐標及p的值;
(3)若3S△AOP=S△BOP,求直線BD的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現代互聯網技術的廣泛應用,催生了快遞行業的高速發展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數分別為10萬件和12.1萬件.現假定該公司每月投遞的快遞總件數的增長率相同.
(1)求該快遞公司投遞快遞總件數的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現有的21名快遞投遞業務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業務員?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+3與x軸交于A,B兩點,與y軸交于點C,點D,C關于拋物線的對稱軸對稱,直線AD與y軸相交于點E.
(1)求直線AD的解析式;
(2)如圖1,直線AD上方的拋物線上有一點F,過點F作FG⊥AD于點G,作FH平行于x軸交直線AD于點H,求△FGH周長的最大值;
(3)如圖2,點M是拋物線的頂點,點P是y軸上一動點,點Q是坐標平面內一點,四邊形APQM是以PM為對角線的平行四邊形,點Q′與點Q關于直線AM對稱,連接M Q′,P Q′.當△PM Q′與□APQM重合部分的面積是□APQM面積的時,求□APQM面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com