【題目】已知分式A=.
(1) 化簡這個分式;
(2) 當a>2時,把分式A化簡結果的分子與分母同時加上3后得到分式B,問:分式B的值較原來分式A的值是變大了還是變小了?試說明理由.
(3) 若A的值是整數,且a也為整數,求出符合條件的所有a值的和.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結OE.過點C作CF∥BD交線段OE的延長線于點F,連結DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。
(1)籃球和排球的單價各是多少元?
(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形且AB=AC,BD是⊙O的直徑,過點A做AP∥BC交DB的延長線于點P,連接AD.
(1)求證:AP是⊙O的切線;
(2)若⊙O的半徑是2,cos∠ABC= ,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在△PAB的邊PA、PB上分別取點C、D,連接CD使CD∥AB.將△PCD繞點P按逆時針方向旋轉得到△PC′D′(∠APC′<∠APB),連接AC′、BD′.
(1)如圖1, 若∠APB=90°,PA=PB,求證:AC′=BD′;AC′⊥BD′.
(2)在圖1中,連接AD′、BC′,分別取AB、AD′、C′D′、BC′的中點E、F、G、H,順次連接E、F、G、H得到四邊形EFGH.請判斷四邊形EFGH的形狀,并說明理由.
(3)①如圖2, 若改變(1)中∠APB的大小,使0°<∠APB<90°,其他條件不變,重復(2)中操作.請你直接判斷四邊形EFGH的形狀.
②如圖3,若改變(1)中PA、PB的大小關系,使PA<PB,其他條件不變,重復(2)中操作,請你直接判斷是四邊形EFGH的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,一次函數y=kx+b的圖象與反比例函數的圖象交于
,
兩點.
(1)求一次函數和反比例函數的解析式;
(2)設點和
是反比例函數
圖象上兩點,若
,求
的值;
(3)若M(x1,y1)和N(x2,y2)兩點在直線AB上,如圖2所示,過M、N兩點分別作y軸的平行線交雙曲線于E、F,已知﹣3<x1<0,x2>1,請探究當x1、x2滿足什么關系時,MN∥EF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業生產部統計了15名工人某月的加工零件數:
每人加工零件數 | 540 | 450 | 300 | 240 | 210 | 120 |
人數 | 1 | 1 | 2 | 6 | 3 | 2 |
(1)求出這15人該月加工零件數的平均數并直接寫出中位數和眾數;
(2)若生產部領導把每位工人的月加工零件數定為260件,你認為合理否,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=30°,點M、N分別在邊OA、OB上,且OM=1,ON=3,點P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是____________
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com