【題目】如圖,Rt△AOB在平面直角坐標系中,點O與坐標原點重合,點A在x軸上,點B在y軸上,,將△AOB沿直線BE折疊,使得OB邊落在AB上,點O與點D重合.
(1)求直線BE的解析式;
(2)求點D的坐標;
(3)x軸上是否存在點P,使△PAD為等腰三角形?若存在,請直接寫出點P的坐標,若不存在,請說明理由。
【答案】(1)y=x+2
(2)(-3,
)(3)
或(
)或(0,0)或(-4,0)
【解析】
(1)先利用直角三角形的性質(直角三角形中,如果有一個角是30°,那么它所對的直角邊等于斜邊的一半.)和勾股定理求出點的坐標E(﹣2,0),進一步用待定系數法求出一次函數的解析式y=x+2
.
(2)過D作DG⊥OA于G.由折疊可知DE=2.再由∠EDG=30°,得到GE=1,DG=,從而可求出D的坐標;
(3)設P(x,0).可求得DG=,AD=
.然后分三種情況討論:
①以A為圓心,AD為半徑作圓與x軸交于點P;②以D為圓心,DA為半徑作圓與x軸交于點P;③設線段AD的垂直平分線交x軸于P.
(1)∵OB=,AO=6,∴AB=
=
,∴∠BAO=30°,∴∠ABO=60°.
∵沿BE折疊O、D重合,∴∠EBO=30°,OE=BE,設OE=x,則(2x)2=x2+
,∴x=2,即 BE=4,E(﹣2,0),設y=kx+b代入得:
,解得:
,∴直線BE的解析式是:
;
(2)過D作DG⊥OA于G.
∵沿BE折疊O、D重合,∴DE=2.
∵∠DAE=30°,∴∠DEA=60°,∠ADE=∠BOE=90°,∴∠EDG=30°,∴GE=1,DG=,∴OG=1+2=3,∴D的坐標是:D
;
(3)設P(x,0).
∵∠OAB=30°,DG=,∴AD=2DG=
.分三種情況討論:
①以A為圓心,AD為半徑作圓與x軸交于點P,則AP=AD=,∴P(
,0);
②以D為圓心,DA為半徑作圓與x軸交于點P,則AP=2AG= DG=6.
∵OA=6,∴P與O重合,∴P(0,0);
③設線段AD的垂直平分線交x軸于P,則PA=PD,∴,解得:x=-4,∴P(-4,0).
綜上所述:P的坐標為:P(,0)或P(0,0)或P(-4,0).
科目:初中數學 來源: 題型:
【題目】某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成20份),并規定:顧客每購物滿200元,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續購物.如果顧客不愿意轉盤,那么可直接獲得10元的購物券.
(1)求轉動一次轉盤獲得購物券的概率;
(2)轉轉盤和直接獲得購物券,你認為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示.在△ABC中,內角∠BAC與外角∠CBE的平分線相交于點P,BE=BC,PB與CE交于點H,PG∥AD交BC于F,交AB于G,連接CP.下列結論:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義一種對正整數n的“F運算”:①當n為奇數時,結果為3n+5;②當n為偶數時,結果為(其中k是使
為奇數的正整數);并且運算重復進行.例如,取n=26,第3次“F運算”的結果是11.則:若n=449,則第449次“F運算”的結果是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:
設(其中a、b、m、n均為整數),則有
.
∴.這樣小明就找到了一種把類似
的式子化為平方式的方法。
請你仿照小明的方法探索并解決下列問題:(a,b,m,n均為正整數)
(1),用含m、n的式子分別表示a、b,得:a=___,b=___;
(2)當a=7,n=1時,填空:7+ =( +
)2
(3)若,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G.則下列結論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過格點A,B,C作一圓弧,點B與下列格點的連線中,能夠與該圓弧相切的是( )
A.點(0,3)
B.點(2,3)
C.點(5,1)
D.點(6,1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°.如果將該三角形繞點A按順時針方向旋轉到△AB1C1的位置,點B1恰好落在邊BC的中點處.那么旋轉的角度等于( )
A.55°
B.60°
C.65°
D.80°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com