【題目】如圖,在等腰Rt△ABC中,斜邊AB=8,點P在以AC為直徑的半圓上,M為PB的中點,當點P沿半圓從點A運動至點C時,點M運動的路徑長是( )
A.2 π
B. π
C.2π
D.2
【答案】B
【解析】解:如圖,連接PA、PC,取AB、BC的中點E、F,連接EF、EM、FM.
∵AC是直徑,
∴∠APC=90°,
∵BE=EA,BM=MP,
∴EM∥PA,同理FM∥PC,
∴∠BME=∠BPA,∠BMF=∠BPC,
∴∠BME+∠BMF=∠BPA+∠BPC=90°,
∴∠EMF=90°,
∴點M的軌跡是 ,(EF為直徑的半圓,圖中紅線部分)
∵BC=AC,∠ACB=90°,AB=8,
∴AC=4 ,EF=
AC=2
,
∴ 的長=π
=
π.
故選B.
【考點精析】認真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°).
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,若
是
的角平分線,點
和點
分別在
和
上,且
,垂足為
,
,垂足為
(如圖
),則可以得到以下兩個結論:
①;②
.
那么在中,仍然有條件“
是
的角平分線,點
和點
,分別在
和
上”,請探究以下兩個問題:
若
(如圖
),則
與
是否仍相等?若仍相等,請證明;否則請舉出反例.
若
,則
是否成立?(只寫出結論,不證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解射擊運動員小杰的集訓效果,教練統計了他集訓前后的兩次測試成績(每次測試射擊10次),制作了如圖所示的條形統計圖.
(1)集訓前小杰射擊成績的眾數為 ;
(2)分別計算小杰集訓前后射擊的平均成績;
(3)請用一句話評價小杰這次集訓的效果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=m是平行于x軸的直線,將拋物線y=﹣ x2﹣4x在直線y=m上側的部分沿直線y=m翻折,翻折后的部分與沒有翻折的部分組成新的函數圖象,若新的函數圖象剛好與直線y=﹣x有3個交點,則滿足條件的m的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC和△DCE均是等邊三角形,點B、C、E在同一條直線上,AE與BD交于點O,AE與CD交于點G,AC與BD交于點F,連接OC、FG,則下列結論:①AE=BD;②AO=BF;③FG∥BE;④∠BOC=∠EOC;⑤BO=OC+AO,其中正確的結論有( )個.
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】11世紀的一位阿拉伯數學家曾提出一個“鳥兒捉魚”問題:小溪邊長著兩棵棕櫚樹,恰好隔岸相望一棵棕櫚樹高是30肘尺(肘尺是古代的長度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見棕櫚樹間的水面上游出一條魚,它們立刻以相同的速度飛去抓魚,并且同時到達目標.問:這條魚出現的地方離比較高的棕櫚樹的樹根有多遠?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com