【題目】如圖,AB為⊙O的直徑,直線BM⊥AB于點B,點C在⊙O上,分別連接BC,AC,且AC的延長線交BM于點D,CF為⊙O的切線交BM于點F.
(1)求證:CF=DF;
(2)連接OF,若AB=10,BC=6,求線段OF的長.
【答案】(1)詳見解析;(2)OF=.
【解析】
(1)連接OC,如圖,根據切線的性質得∠1+∠3=90°,則可證明∠3=∠4,再根據圓周角定理得到∠ACB=90°,然后根據等角的余角相等得到∠BDC=∠5,從而根據等腰三角形的判定定理得到結論;
(2)根據勾股定理計算出AC=8,再證明△ABC∽△ABD,利用相似比得到AD=,然后證明OF為△ABD的中位線,從而根據三角形中位線性質求出OF的長.
(1)證明:連接OC,如圖,
∵CF為切線,
∴OC⊥CF,
∴∠1+∠3=90°,
∵BM⊥AB,
∴∠2+∠4=90°,
∵OC=OB,
∴∠1=∠2,
∴∠3=∠4,
∵AB為直徑,
∴∠ACB=90°,
∴∠3+∠5=90°,∠4+∠BDC=90°,
∴∠BDC=∠5,
∴CF=DF;
(2)在Rt△ABC中,AC==8,
∵∠BAC=∠DAB,
∴△ABC∽△ABD,
∴,即
,
∴AD=,
∵∠3=∠4,
∴FC=FB,
而FC=FD,
∴FD=FB,
而BO=AO,
∴OF為△ABD的中位線,
∴OF=AD=
.
科目:初中數學 來源: 題型:
【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖.
(1)畫出△ABC關于y軸對稱的△A1B1C1.
(2)畫出△ABC繞點O按逆時針方向旋轉90°后的△A2B2C2.
(3)判斷△A1B1C1和△A2B2C2是不是成軸對稱?如果是,請在圖中作出它們的對稱軸.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,過A點作AGBD交CB的延長線于點G.
(1)求證:DEBF;
(2)當∠G為何值時?四邊形DEBF是菱形,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩地相距300
,甲、乙兩車同時從
地出發駛向
地,甲車到達
地后立即返回,如圖是兩車離
地的距離
(
)與行駛時間
(
)之間的函數圖象.
(1)求甲車行駛過程中與
之間的函數解析式,并寫出自變量
的取值范圍.
(2)若兩車行駛5相遇,求乙車的速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,經過點A(6,0)的直線y=kx﹣3與直線y=﹣x交于點B,點P從點O出發以每秒1個單位長度的速度向點A勻速運動.
(1)求點B的坐標;
(2)當△OPB是直角三角形時,求點P運動的時間;
(3)當BP平分△OAB的面積時,直線BP與y軸交于點D,求線段BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作DF⊥AC于點F.
(1)若⊙O的半徑為3,∠CDF=15°,求陰影部分的面積;
(2)求證:DF是⊙O的切線;
(3)求證:∠EDF=∠DAC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市現在有兩種用電收費方法:
分時電表 | 普通電表 | |
峰時(8:00~21:00) | 谷時(21:00到次日8:00) | |
電價0.55元/千瓦·時 | 電價0.35元/千瓦·時 | 電價0.52元/千瓦·時 |
小明家所在的小區用的電表都換成了分時電表.
解決問題:
(1)小明家庭某月用電總量為千瓦·時(
為常數);谷時用電
千瓦·時,峰時用電
千瓦·時,分時計價時總價為
元,普通計價時總價為
元,求
,
與用電量的函數關系式.
(2)小明家庭使用分時電表是不是一定比普通電表合算呢?
(3)下表是路皓家最近兩個月用電的收據:
谷時用電(千瓦·時) | 峰時用電(千瓦·時) |
181 | 239 |
根據上表,請問用分時電表是否合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,E在AD上,F在AB上,EF⊥CE于E,DE=AF=2,矩形的周長為24,則BF的長為( 。
A. 3 B. 4 C. 5 D. 7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:
(2)請從下列三個不同的角度對這次測試結果進行分析:
①從平均數和方差相結合看, 的成績好些;
②從平均數和中位數相結合看, 的成績好些;
③若其他隊選手最好成績在9環左右,現要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com