精英家教網 > 初中數學 > 題目詳情

【題目】如圖,∠ABC90°,ADBC,以B為圓心,BC長為半徑畫弧,與射線AD相交于點E,連接BE,過點CCFBE,垂足為F.若AB6,BC10,則EF的長為___________.

【答案】2

【解析】

由題意得BC=BE=10,在RtAEB中,可求出sinAEB,繼而可得出sinEBC的值,根據CF=BCsinEBC可得出CF的長,然后在RtBCF中,利用勾股定理可得出BF的長,進而求出EF的長.

解:由題意得,BC=BE=10,且∠ABC90°

sinAEB= ,

ADBC

AEB=EBC,

CFBE∴∠BFC=90°

sinEBC= ,
CF=BCsinEBC=6,
RtBFC中,BF=

EF=10-8=2
故答案為:2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,一小孩將一只皮球從A處拋出去,它所經過的路線是某個二次函數圖象的一部分,如果他的出手處A距地面的距離OA1m,球路的最高點B(8,9),則這個二次函數的表達式為______,小孩將球拋出了約______(精確到0.1m).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形.若學校位置的坐標為A(1,2),解答以下問題:

(1)請在圖中建立適當的直角坐標系,并寫出圖書館B位置的坐標;

(2)若體育館位置的坐標為C(3,3),請在坐標系中標出體育館的位置,并順次連接學校、圖書館、體育館,得到△ABC,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BD和CD分別平分ABC的內角EBA和外角ECA,BD交AC于F,連接AD.

(1)求證:BDC=BAC

(2)若AB=AC,請判斷ABD的形狀,并證明你的結論;

(3)在(2)的條件下,若AF=BF,求EBA的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,,把繞著它的斜邊中點逆時針旋轉的位置,于點重疊部分的面積為

A. 8 B. 9 C. 10 D. 12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A在線段BD上,在BD的同側作等腰RtABC和等腰RtADE,CDBE、AE分別交于點PM.對于下列結論:①△BAE∽△CAD;MPMDMAME;2CB2CPCM.其中正確的是(  。

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,已知函數yx>0)圖象上一點P,PAx軸于點Aa,0),點B坐標為(0,b)(b>0).動點My軸正半軸上點B上方的點.動點N在射線AP上,過點BAB的垂線,交射線AP于點D.交直線MN于點Q.連接AQ.取AQ的中點C.

(1)如圖2,連接BP,求PAB的面積;

(2)當點Q在線段BD上時,若四邊形BQNC是菱形,面積為2 ,求此時P點的坐標;

(3)在(2)的條件下,在平面直角坐標系中是否存在點S,使得以點D、Q、N、S為項點的四邊形為平行四邊形?如果存在,請直接寫出所有的點S的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列文字與例題,并解答。

將一個多項式分組進行因式分解后,可用提公因式法或公式法繼續分解的方法稱作分組分解法。例如:以下式子的分解因式的方法叉稱為分組分解法。

1)試用“分組分解法”分解因式:

2)已知四個實數a,b,c,d滿足。并且,,,同時成立。

①當k=1時,求a+c的值;

②當k≠0時,用含a的代數式分別表示b、c、d。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB6,AC5,BC邊上的高AD4,則ABC的周長為__________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视