精英家教網 > 初中數學 > 題目詳情

【題目】△ABC中,點D在邊BABA的延長線上,過點DDE∥BC,交∠ABC的角平分線于點E.

(1)如圖1,當點D在邊BA上時,點E恰好在邊AC上,求證:∠ADE=2∠DEB;

(2)如圖2,當點DBA的延長線上時,請直接寫出∠ADE∠DEB之間的數量關系,并說明理由.

【答案】(1)詳見解析;(2)∠ADE+2∠DEB=180°.

【解析】

(1)由角平分線的定義可得出∠ABE=∠CBE,由平行線的性質可得出∠CBE=∠DEB、∠ADE=∠ABC,進而可得出∠ABE=∠DEB,再利用三角形外角的性質即可證出∠ADE=2∠DEB;

(2)由角平分線的定義可得出∠ABC=2∠CBE,利用平行線的性質可得出∠DEB=∠CBE,進而可得出∠ABC=2∠DEB,再利用“兩直線平行,同旁內角互補”可證出∠ADE+2∠DEB=180°.

證明:(1)∵BE平分∠ABC,

∴∠ABE=∠CBE.

∵DE∥BC,

∴∠CBE=∠DEB,∠ADE=∠ABC,

∴∠ABE=∠DEB,

∴∠ADE=∠ABE+∠DEB=2∠DEB.

(2)∠ADE+2∠DEB=180°.

∵BE平分∠ABC,

∴∠ABC=2∠CBE.

∵DE∥BC,

∴∠DEB=∠CBE,∠ADE+∠ABC=180°,

∴∠ABC=2∠DEB,

∴∠ADE+2∠DEB=180°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為8cm,∠A=60°,DE⊥AB于點E,DF⊥BC于點F,則四邊形BEDF的面積為cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,每個小方格的邊長為1個單位長度,在第二象限內有橫、縱坐標均為整數的A、B兩點,點B(﹣2,3),點A的橫坐標為﹣2,且OA=

(1)直接寫出A點的坐標,并連接AB,AO,BO;
(2)畫出△OAB關于點O成中心對稱的圖形△OA1B1 , 并寫出點A1、B1的坐標;(點A1、B1的對應點分別為A、B)
(3)將△OAB水平向右平移4個單位長度,畫出平移后的△O1A2B2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,點D在邊BABA的延長線上,過點DDE∥BC,交∠ABC的角平分線于點E.

(1)如圖1,當點D在邊BA上時,點E恰好在邊AC上,求證:∠ADE=2∠DEB;

(2)如圖2,當點DBA的延長線上時,請直接寫出∠ADE∠DEB之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,正方形ABCD中,點E、F分別在邊DC、AD上,且AE⊥BF于G.

(1)求證:BF=AE;
(2)如圖2,當點E在DC延長線上,點F在AD延長線上時,(1)中結論是否成立?(直接寫結論)

(3)在圖2中,若點M、N、P、Q分別為四邊形AFEB四條邊AF、EF、EB、AB的中點,且AF:AD=4:3,求S四邊形MNPQ:S正方形ABCD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如下命題:①三角形的中線、角平分線、高都是線段;②三角形的三條高必交于一點;③三角形的三條角平分線必交于一點;④三角形的三條高必在三角形內.其中正確的是( )

A. ①② B. ①③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有甲、乙兩個可以自由轉動的轉盤,其中轉盤甲被平均分成三個扇形,轉盤乙被平均分成五個扇形,小明與小亮玩轉盤游戲,規則如下:同時轉動兩個轉盤,轉盤停止后,轉盤中甲指針所指數字作為點的橫坐標,轉盤乙指針所指數字作為點的縱坐標,從而確定一個點的坐標為A(m,n).當點A在第一象限時,小明贏;當點A在第二象限時,小亮贏.請你利用畫樹狀圖或列表法分析該游戲規則對雙方是否公平?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知三角形的兩條邊長分別是7和3,第三邊長為整數,則這個三角形的周長是偶數的概率是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBCB=90°,且AD=12cmAB=8cm,DC=10cm,若動點PA點出發,以每秒2cm的速度沿線段AD向點D運動;動點QC點出發以每秒3cm的速度沿CBB點運動,當P點到達D點時,動點P、Q同時停止運動,設點P、Q同時出發,并運動了t秒,回答下列問題:

1BC= cm

2)當t為多少時,四邊形PQCD成為平行四邊形?

3)當t為多少時,四邊形PQCD為等腰梯形?

4)是否存在t,使得DQC是等腰三角形?若存在,請求出t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视