【題目】如圖,在正方形
中,
是
的中點,
是
延長線上的一點,
.
求證
;
閱讀下列材料:
如圖,把
沿直線
平行移動線段
的長度,可以變到
的位置;
如圖,以
為軸把
翻折
,可以變到
的位置;
如圖,以點
為中心把
旋轉
,可以變到
的位置.
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動、翻折、旋轉中的哪一種方法使
變到
的位置,
答:________.
②指出圖中,線段
與
之間的關系.
答:________.
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,過AB上一點D作DE∥AC交BC于點E,以E為頂點,ED為一邊,作∠DEF=∠A,另一邊EF交AC于點F.
(1)求證:四邊形ADEF為平行四邊形;
(2)當點D為AB中點時,判斷ADEF的形狀;
(3)延長圖①中的DE到點G,使EG=DE,連接AE,AG,FG,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側,AB∥CD,且,若 AB=8cm,則 CD 的長為_____cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用適當的方法解下列方程:
(1)4(x-1)2=100
(2)x2-2x-15=0
(3)3x2-13x-10=0
(4)3(x-3)2+x(x-3)=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).小華的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE 、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標為(5,8),直線PM的解析式為y=kx+b,求所有滿足條件的k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃成立下列學生社團: A.合唱團: B.英語俱樂部: C.動漫創作社; D.文學社:E.航模工作室為了解同學們對上述學生社團的喜愛情況某課題小組在全校學生中隨機抽取了部分同學,進行“你最喜愛的一個學生社團”的調查,根據調查結果繪制了如下尚不完整的統計圖.
請根據以上信息,解決下列問題:
(1)本次接受調查的學生共有多少人;
(2)補全條形統計圖,扇形統計圖中D選項所對應扇形的圓心角為多少;
(3)若該學校共有學生3000人,估計該學校學生中喜愛合唱團和動漫創作社的總人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CF⊥AB于點E,CF=4,過點C作⊙O的切線交AB的延長線于點D,∠D=30°,則OA的長為( 。
A. 2 B. 4 C. 4
D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分線交AD于E,交AC于F,∠CAD的角平分線AG交BF于H,交DC于G.
(1)求證:AE=AF;
(2)判斷BF與AG的位置關系,并說明理由.
(3)再找出二組相等的線段:① ; ② .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com