【題目】如圖,拋物線y=ax2+bx+c經過A(1,0)、B(4,0)、C(0,3)三點.
(1)求該拋物線的解析式;
(2)如圖,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最。咳舸嬖,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
(3)在(2)的條件下,點Q是線段OB上一動點,當△BPQ與△BAC相似時,求點Q的坐標.
【答案】(1) ;(2)存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9;(3)Q的坐標
或
.
【解析】
(1)將A(1,0)、B(4,0)、C(0,3)代入y=ax2+bx+c,求出a、b、c即可;
(2)四邊形PAOC的周長最小值為:OC+OA+BC=1+3+5=9;
(3)分兩種情況討論:①當△BPQ∽△BCA,②當△BQP∽△BCA.
解:(1)由已知得,
解得
所以,拋物線的解析式為;
(2)∵A、B關于對稱軸對稱,如下圖,連接BC,與對稱軸的交點即為所求的點P,此時PA+PC=BC,
∴四邊形PAOC的周長最小值為:OC+OA+BC,
∵A(1,0)、B(4,0)、C(0,3),
∴OA=1,OC=3,BC=5,
∴OC+OA+BC=1+3+5=9;
∴在拋物線的對稱軸上存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9;
(3)如上圖,設對稱軸與x軸交于點D.
∵A(1,0)、B(4,0)、C(0,3),
∴OB=4,AB=3,BC=5,
直線BC:,
由二次函數可得,對稱軸直線,
∴,
①當△BPQ∽△BCA,
,
,
,
,
②當△BQP∽△BCA,
,
,
,
,
,
綜上,求得點Q的坐標或
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個單位,得到△A1B1C1;
②將△A1B1C1繞點B1逆時針旋轉90°,得到△A2B2C2.
(2)求點C1在旋轉過程中所經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調查,統計整理并繪制了如下兩幅尚不完整的統計圖.
請根據以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統計圖中,“經常參加”所對應的圓心角的度數為________;
(2)請補全條形統計圖;
(3)該校共有1200名男生,請估計全校男生中經常參加課外體育鍛煉并且最喜歡的項目是籃球的人數;
(4)小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數約為1200×=108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線與
軸、
軸分別交于
、
兩點,拋物線
經過
、
兩點,與
軸的另一個交點為
,且
.
(1)求拋物線的解析式;
(2)點在
上,點
在
的延長線上,且
,連接
交
于點
,點
為第一象限內的一點,當
是以
為斜邊的等腰直角三角形時,連接
,設
的長度為
,
的面積為
,請用含
的式子表示
,并寫出自變量
的取值范圍;
(3)在(2)的條件下,連接、
,將
沿
翻折到
的位置(
與
對應),若
,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:一般地,個相同的因數
相乘
,記為
.如
,此時,
叫做以
為底
的對數,記為
(即
).一般地,若
,(
且
,
),則
叫做以
為底
的對數,記為
(即
).如
,則
叫做以
為底
的對數,記為
(即
).
(1)計算以下各對數的值:__________,
__________,
__________.
(2)觀察(1)中三數、
,
之間滿足怎樣的關系式,
、
、
之間又滿足怎樣的關系式;
(3)由(2)的結果,你能歸納出一個一般性的結論嗎?__________.(
且
,
,
)
(4)根據冪的運算法則:以及對數的含義證明上述結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2+ax+a﹣2=0.
(1)求證:不論a取何實數,該方程都有兩個不相等的實數根;
(2)若該方程的一個根為1,求a的值及該方程的另一根.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com