【題目】如圖1,在矩形ABCD中,E是CD上一點,動點P從點A出發沿折線AE→EC→CB運動到點B時停止,動點Q從點A沿AB運動到點B時停止,它們的速度均為每秒1cm.如果點P、Q同時從點A處開始運動,設運動時間為x(s),△APQ的面積為ycm2,已知y與x的函數圖象如圖2所示,以下結論:①AB=5cm;②cos∠AED= ;③當0≤x≤5時,y=
;④當x=6時,△APQ是等腰三角形;⑤當7≤x≤11時,y=
.其中正確的有( 。
A.2個B.3個C.4個D.5個
科目:初中數學 來源: 題型:
【題目】已知函數y=y1+y2,其中y1與x成反比例,y2與x﹣2成正比例,函數的自變量x的取值范圍是x≥,且當x=1或x=4時,y的值均為
.
請對該函數及其圖象進行如下探究:
(1)解析式探究:根據給定的條件,可以確定出該函數的解析式為: .
(2)函數圖象探究:
①根據解析式,補全下表:
x | 1 | 2 | 3 | 4 | 6 | 8 | … | |||
y | … |
②根據表中數據,在如圖所示的平面直角坐標系中描點,并畫出函數圖象.
(3)結合畫出的函數圖象,解決問題:
①當x=,
,8時,函數值分別為y1,y2,y3,則y1,y2,y3的大小關系為: ;(用“<”或“=”表示)
②若直線y=k與該函數圖象有兩個交點,則k的取值范圍是 ,此時,x的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長DE交⊙O于點F,延長DC,FB交于點P,如圖1.求證:PC=PB;
(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F,且DE=EF.
(1)求證:∠C=90°;
(2)當BC=3,sinA=時,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知點A、B、C、D在一條直線上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.
(1)求證:△ACE≌△DBF;
(2)如果把△DBF沿AD折翻折使點F落在點G,如圖2,連接BE和CG. 求證:四邊形BGCE是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測量建筑物AD的高度,小亮從建筑物正前方10米處的點B出發,沿坡度i=1:的斜坡BC前進6米到達點C,在點C處放置測角儀,測得建筑物頂部D的仰角為40°,測角儀CE的高為1.3米,A、B、C、D、E在同一平面內,且建筑物和測角儀都與地面垂直求建筑物AD的高度.(結果精確到0.1米參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,
≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點E為AD的中點,點P為線段AB上一個動點,連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當△ECF為直角三角形時,AP的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系中,已知拋物線與x軸交于A,B兩點,與y軸交于點C,直線l經過坐標原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標分別為(-2,0),(6,-8).
(1)求拋物線的函數表達式,并分別求出點B和點E的坐標;
(2)試探究拋物線上是否存在點F,使≌
,若存在,請直接寫出點F的坐標;若不存在,請說明理由;
(3)若點P是y軸負半軸上的一個動點,設其坐標為(0,m),直線PB與直線l交于點Q.試探究:當m為何值時,是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且點A1,A3,A5,A7,A9的坐標分別為A1 (3,0),A3 (1,0),A5 (4,0),A7 (0.0),A9 (5.0),依據圖形所反映的規律,則A102的坐標為( 。
A. (2,25)B. (2,26)C. (,﹣
)D. (
,﹣
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com