精英家教網 > 初中數學 > 題目詳情

【題目】某同學在用描點法畫二次函數y= +bx+c的圖象時,列出了下面的表格:

x

﹣2

﹣1

0

1

2

y

﹣11

﹣2

1

﹣2

﹣5

由于粗心,他算錯了其中一個y值,則這個錯誤的數值是( ).
A.﹣11 B.﹣2 C.1 D.﹣5

【答案】D.

【解析】根據關于對稱軸對稱的自變量對應的函數值相等,可得答案.由函數圖象關于對稱軸對稱,得(﹣1,﹣2),(0,1),(1,﹣2)在函數圖象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函數解析式,得a-b+c=-2,c=1,a+b+c=-2,解得a=-3,b=0,c=1,所以函數解析式為y= +1,x=2時y=﹣11.

所以答案是:D.


【考點精析】認真審題,首先需要了解二次函數的性質(增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知是等邊三角形,

如圖1,點EBC上一點,點FAC上一點,且,連接AE,BF交于點G,求的度數;

如圖2,點MBC延長線上一點,,MN的外角平分線于點N,求的值;

如圖3,過點A于點D,點P是直線AD上一點,以CP為邊,在CP的下方作等邊,連DQ,則DQ的最小值是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在 Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.

(1)求證:AE=BF.
(2)連接GB,EF,求證:GB∥EF.
(3)若AE=1,EB=3,求DG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,折線ABCDE描述了一輛汽車在某一直線上行駛過程中,汽車離出發地的距離y(km)和行駛時間x(h)之間的函數關系,根據圖中提供的信息,給出下列說法:汽車共行駛了120km;汽車在行駛途中停留了0.5h;汽車在整個行駛過程中的平均速度為km/h;汽車自出發后3h~4.5h之間行駛的速度在逐漸減小.其中正確的說法是 .(填上所有正確的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂的纜車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂的線路長的2倍,小穎在小亮出發后50分才乘上纜車,纜車的平均速度為180米/分,設小亮出發x分后行走的路程為y米.圖中的折線表示小亮在整個行走過程中yx的變化關系.

1)小亮行走的總路程是_________米,他途中休息了___________分;

2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;

3)當小穎到達纜車終點時,小亮離纜車終點的路程是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖1,在RtABC中,AB3,AC4,BC5,若直線EF垂直平分BC,請你利用尺規畫出直線EF;

(2)若點P(1)BC的垂直平分線EF上,請直接寫出PA+PB的最小值,回答PA+PB取最小值時點P的位置并在圖中標出來;

解:PA+PB的最小值為   PA+PB取最小值時點P的位置是   ;

(3)如圖2,點M,N分別在直線AB兩側,在直線AB上找一點Q,使得∠MQB=∠NQB.要求畫圖,并簡要敘述確定點Q位置的步驟(無需尺規作圖,保留畫圖痕跡,無需證明)

解:確定點Q位置的簡要步驟:   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,2)、B(31)、C(2,﹣1)

(1)在圖中作出△ABC關于y軸對稱的△A1B1C1;

(2)寫出A1B1、C1的坐標;

(3)求△A1B1C1的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點D,點E為BC的中點,連接DE.

(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,,,DAB的中點,點EF分別在AC、BC邊上運動E不與點A、C重合,且保持,連接DE、DF、在此運動變化的過程中,有下列結論:;四邊形CEDF的面積隨點E、F位置的改變而發生變化;;以上結論正確的是______只填序號

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视