【題目】(1)如圖1,把△ABC沿DE折疊,使點A落在點A’處,若∠A=50°,求∠1+∠2的度數,猜想并直接寫出∠1+∠2與∠A的數量關系.(不必證明)
(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點A與點I重合,若∠1+∠2=110°,求∠BIC的度數;
(3)如圖3,在銳角△ABC中,BF⊥AC于點F,CG⊥AB于點G,BF、CG交于點H,把△ABC折疊使點A和點H重合,試探索∠BHC與∠1+∠2的關系,并證明你的結論.
【答案】(1)100°,∠1+∠2=2∠A;(2)117.5°;(3)∠BHC=180°-(∠1+∠2),證明見解析.
【解析】
(1)根據翻折變換的性質以及三角形內角和定理以及平角的定義求出即可;
(2)根據三角形角平分線的性質得出∠IBC+∠ICB=90°-∠A,得出∠BIC的度數即可;
(3)根據翻折變換的性質以及垂線的性質得出,∠AFH+∠AGH=90°+90°=180°,進而求出∠A=(∠1+∠2),即可得出答案.
(1)∠1+∠2=2∠A;
理由:根據翻折的性質,∠ADE=(180°-∠1),∠AED=
(180°-∠2),
∵∠A+∠ADE+∠AED=180°,
∴∠A+(180-∠1)+
(180-∠2)=180°,
整理得2∠A=∠1+∠2,
∵∠A=50°,
∴∠1+∠2=100°,
猜想:∠1+∠2=2∠A;
(2)由(1)∠1+∠2=2∠A,得2∠A=110°,∴∠A=55°,
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=(∠ABC+∠ACB)=
(180°-∠A)=90°-
∠A,
∴∠BIC=180°-(∠IBC+∠ICB)=180°-(90°-∠A)=90°+
×55°=117.5°;
(3)∵BF⊥AC,CG⊥AB,
∴∠AFH+∠AGH=90°+90°=180°,
∴∠FHG+∠A=360°-180°=180°,
∴∠BHC=∠FHG=180°-∠A,
由(1)知∠1+∠2=2∠A,
∴∠A=(∠1+∠2),
∴∠BHC=180°-(∠1+∠2).
科目:初中數學 來源: 題型:
【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現計劃開鑿隧道A,B兩地直線貫通,經測量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結果精確到0.1km,參考數據: ≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某開發公司生產的 960 件新產品需要精加工后,才能投放市場,現甲、乙兩個工廠都想加工這批產品,已知甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用 20 天,而甲工廠每天加工的數量是乙工廠每天加工的數量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.
(1)甲、乙兩個工廠每天各能加工多少件新產品?
(2)公司制定產品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術指導,并負擔每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在“漢字聽寫”大賽中,準備一次性購買若干鋼筆和筆記本(每支鋼筆的價格相同,每本筆記本的價格相同)作為優勝者的獎品,已知購買3支鋼筆和4本筆記本共需88元,購買4支鋼筆和5本筆記本共需114元.
(1)求購買一支鋼筆和一本筆記本各需多少元?
(2)學校準備購買鋼筆和筆記本共80件獎品,根據規定購買的總費用不能超過1200元,求最多可以購買多少支鋼筆?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, =
=
,點E是點D關于AB的對稱點,M是AB上的一動點,下列結論:①∠BOE=60°;②∠CED=
∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結論中正確的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com