【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(5,0),與y軸交于點C(0,),頂點為D,對稱軸交x軸于點E.
(1)求該拋物線的一般式;
(2)若點Q為該拋物線上第一象限內一動點,且點Q在對稱軸DE的右側,求四邊形DEBQ面積的最大值及此時點Q的坐標;
(3)若點P為對稱軸DE上異于D,E的動點,過點D作直線PB的垂線交直線PB于點F,交x軸于點G,當△PDG為等腰三角形時,請直接寫出點P的坐標.
【答案】(1)y=﹣;(2)
,Q(
,
);(3)點P的坐標為(2,﹣
)或(2,
﹣2)或(2,﹣
﹣2)或(2,﹣
)
【解析】
(1)將A,B,C三點的坐標直接代入解析式即可求出a、b,c的值;
(2)過點Q作y軸的平行線交BD于點M,設點Q(m,),求出直線BD的解析式為y=
,可設M(m,
),則QM=
,根據S四邊形DEBQ=S△DEB+S△DQM+S△BQM可得出m的表達式,由二次函數的性質可求出答案.
(3)設點P(2,n),可得出點G(2﹣,0),分當GP=GD、GP=PD、GD=PD三種情況,得出n的方程分別求解即可.
解:(1)把A(﹣1,0),B(5,0),C(0,),代入拋物線解析式得:
,解得:
,
∴拋物線解析式為:y=﹣;
(2)∵拋物線解析式為y=﹣=﹣
,
∴拋物線的頂點D的坐標為(2,),對稱軸為x=2,E(2,0),
過點Q作y軸的平行線交BD于點M,設點Q(m,),
設直線BD的解析式為y=kx+b,
則,
解得:,
∴直線BD的解析式為y=,
可設M(m,),
∴QM=﹣(
)=
,
∴S四邊形DEBQ=S△DEB+S△DQM+S△BQM
=+
×(m﹣2)+
,
=.
當m=時,S四邊形DEBQ取得最大值,S四邊形DEBQ=
.
此時.
∴Q(,
).
(3)拋物線的對稱軸為x=2,則點D(2,),
設點P(2,n),
將點P、B的坐標代入一次函數表達式:y=sx+t并解得:
函數PB的表達式為:y=,
∵DG⊥PB,
故直線DG表達式中的k值為,
將點D的坐標代入一次函數表達式,
同理可得直線DG的表達式為:y=,
解得:x=2﹣,
故點G(2﹣,0),
∴GP2=,
,
,
①當GP=GD時,,
解得:n=﹣或
(舍去),
∴P(2,﹣).
②當GP=PD時,,
解得:n=﹣2±,
∴P(2,﹣2+)或P(2,﹣2﹣
).
③當GD=PD時,,
解得:n=﹣或n=0(舍去).
∴P(2,).
綜合上述,點P的坐標為(2,﹣)或(2,
﹣2)或(2,﹣
﹣2)或(2,﹣
).
科目:初中數學 來源: 題型:
【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米處作業(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.請判斷沉船C是否在“蛟龍”號深潛極限范圍內?并說明理由;(精確到0.01)(參考數據:≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點C處有一個高空探測氣球,從點C處測得水平地面上A,B兩點的俯角分別為30°和45°.若AB=2km,則A,C兩點之間的距離為_____km.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分別以點A,C為圓心,大于AC長為半徑作弧,兩弧交于點E,射線BE交AD于點F,交AC于點O.若點O恰好是AC的中點,則CD的長為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD內接于⊙O,點E是上一點(不與A、B重合),點F是
上一點,連接OE,OF,分別與AB,BC交于點G,B,且∠EOF=90°.有下列結論:①
=
;②四邊形OGBH的面積隨著點E位置的變化而變化;③△GBH周長的最小值為2+
;④若BG=1﹣
,則BG,GE,
圍成的面積是
,其中正確的是_____.(把所有正確結論的序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,AD=BD,過點D作DE⊥AB于點E,過點A作AH⊥BD于點H,交DE、BC分別于點F、G,連接CF.
(1)如圖1,求證:∠BAG=∠FCB;
(2)如圖2,過點A作AK平分∠DAF交ED于點K,若AK=1,∠FCD=45°,求DF的長;
(3)如圖3,若AD=10,DH=6,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解七、八年級學生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數、中位數如下:
年級 | 平均數 | 中位數 |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學生有400人,假設全部參加此次測試,請估計七年級成績超過平均數76.9分的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為C(1,4),交x軸于A、B兩點,交y軸于點D,其中點B的坐標為(3,0).
(1)求拋物線的解析式;
(2)如圖2,點P為直線BD上方拋物線上一點,若,請求出點P的坐標.
(3)如圖3,M為線段AB上的一點,過點M作MN∥BD,交線段AD于點N,連接MD,若△DNM∽△BMD,請求出點M的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com