【題目】如圖1和圖2,是直線
上一動點,
兩點在直線
的同側,且點
所在直線與
不平行.
(1)當點運動到
位置時,距離
點最近,在圖1中的直線
上畫出點
的位置;
(2)當點運動到
位置時,與
點的距離和與
點距兩相等,請在圖2中作出
位置;
(3)在直線上是否存在這樣一點
,使得到
點的距離與到
點的距離之和最。咳舸嬖谡堅趫D3中作出這點,若不存在清說明理由.
(要求:不寫作法,請保留作圖痕跡)
科目:初中數學 來源: 題型:
【題目】為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他騎公共自行車比自駕車平均每小時少行駛45千米,他從家出發到上班地點,騎公共自行車所用的時間是自駕車所用的時間的4倍.小張騎公共自行車平均每小時行駛多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,BC=a ,AB=c,AC=b,則不能作為判定△ABC是直角三角形的條件的是( )
A.B.∠A∶∠B∶∠C=1∶4∶3
C.a∶b∶c =7∶24∶25D.a∶b∶c =4∶5∶6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
,
.動點
、
分別從點
、點
同時出發,相向而行,速度都為
.以
為一邊向上作正方形
,過點
作
,交
于點
.設運動時間為
,單位:
,正方形
和梯形
重合部分的面積為
.
當
時,點
與點
重合.
當
時,點
在
上.
當點
在
,
兩點之間(不包括
,
兩點)時,求
與
之間的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,已知△ABC為等邊三角形,D、E分別為BC、AC邊上的兩動點(與點A、B、C不重合),且總使CD = AE,AD與BE相交于點F.
(1)求證:AD = BE;
(2)求∠BFD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀下面的內容,再解答問題.
(閱讀)例題:求多項式m2 + 2mn+2n2-6n+13的最小值.
解;m2+2mn+2n2-6n+ 13= (m2 +2mn+n2)+ (n2-6n+9)+4= (m+n)2+(n-3)2+4,
∵(m+n)20, (n-3)2
0
∴多項式m2+2mn+2n2-6n+ 13的最小值是4.
(解答問題)
(1)請寫出例題解答過程中因式分解運用的公式是
(2)己知a、b、c是△ABC的三邊,且滿足a2+b2=l0a+8b-41,求第三邊c的取值范圍;
(3)求多項式-2x2+4xy-3y2 -3y2-6y+7 的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙D的直徑,AD切⊙D于點A,EC=CB.則下列結論:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個數有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD與BC,OC分別相交于點E,F,則下列結論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤△CEF≌△BED.其中一定成立的結論是_____.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(-3,5),B(-2,1),C(-1,3).
(1)畫出△ABC關于x軸的對稱圖形△A1B1C1;
(2)畫出△A1B1C1沿x軸向右平移4個單位長度后得到的△A2B2C2;
(3)如果AC上有一點M(a,b)經過上述兩次變換,那么對應A2C2上的點M2的坐標是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com