精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC△ADE中,邊AD與邊BC交于點P(不與點B、C重合),點B、EAD異側,OA、OC分別是∠PAC∠PCA的角平分線.

    

1)當∠APC =60°時,求∠AOC的度數;

2)當AB⊥AC,AB=AD=4AC=3,BC=5時,設AP=x,用含x的式子表示PD,并求PD的最大值;

3)當AB⊥AC∠B=20°時,∠AOC的取值范圍為α°<∠AOC <β°,直接寫出α、β的值.

【答案】1∠AOC的度數為120°;(2PD= ,PD的最大值為;(3α=100,β=145

【解析】

1)根據三角形內角和求得∠PAC+PCA的度數,然后根據角平分線的定義求得∠OAC+OCA的度數,從而求解;

2)在△ABC中,當APBC時,AP最小,PD最大,由面積法求出AP的長,即可求出PD的最大值;

3)如圖,由已知可推出∠BAC=90°,設∠BAP=y,則∠PAC=90°-y,∠PCA=70°

推出∠AOC=y+100°,,因為y90°,可推出100°<∠AOC145°,即可寫出α、β的值.

解:在△APC中,∠PAC+PCA=180°-APC=120°

又∵OA、OC分別是∠PAC∠PCA的角平分線

∴∠OAC+OCA=PAC+PCA=(∠PAC+PCA=60°

∴在△OAC中,∠AOC=180°-60°=120°

2)∵AD=AB=4,而PD=AD-AP=4-AP=4-x,

∴當APBC時,AP最小,PD最大,

此時,SABC=BCAP=ABAC,

×5x=×4×3

解得,x=,

PD=PD的最大值為:4-=;

3)如圖,

ABAC

∴∠BAC=90°,

設∠BAP=y,則∠PAC=90°-y,∠PCA=70°

OA、OC分別是∠PAC∠PCA的角平分線,

∴∠OAC=PAC,∠OCA=/span>PCA,

∴∠AOC=180°-(∠OAC+OCA

=180°-(∠PAC+PCA

=180°-90°-y+70°

=y+100°

y90°,

100°y+100°145°

100°<∠AOC145°,

α=100,β=145

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知關于x、y的方程組,給出下列結論

是方程組的解;②無論a取何值,x,y的值都不可能互為相反數

a=1,方程組的解也是方程x+y=4﹣a的解;④x,y的都為自然數的解有4

其中正確的個數為(  

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E.F分別在ABCD上,AE=CF,連接AF,BFDE,CE,分別交于H、G.

求證:(1)四邊形AECF是平行四邊形。(2)EFGH互相平分。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新型冠狀病毒肺炎疫情發生后,全社會積極參與疫情防控工作,某市為了盡快完成100萬只口罩的生產任務,安排甲、乙兩個大型工廠完成.已知甲廠每天能生產口罩的數量是乙廠每天能生產口罩的數量的1.5倍,并且在獨立完成60萬只口罩的生產任務時,甲廠比乙廠少用5天.問至少應安排兩個工廠工作多少天才能完成任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請認真觀察圖形,解答下列問題:

1)根據圖中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.

方法1

方法2

2)從中你能發現什么結論,請用等式表示出來: ;

3)利用(2)中結論解決下面的問題:若,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在菱形ABCD中,∠ABC=60°,E是對角線AC上一點,F是線段BC延長線上一點,且CF=AE,連接BE、EF.

(1)若E是線段AC的中點,如圖1,易證:BE=EF(不需證明);
(2)若E是線段AC或AC延長線上的任意一點,其它條件不變,如圖2、圖3,線段BE,EF有怎樣的數量關系,直接寫出你的猜想;并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點E,BC⊥AC,連接BE,反比例函數 (x>0)的圖象經過點D.已知SBCE=2,則k的值是( )

A.2
B.﹣2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某物流公司引進A、B兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續搬運5小時,A種機器人于某日0時開始搬運,過了1小時,B種機器人也開始搬運,如圖,線段OG表示A種機器人的搬運量yA(千克)與時間x(時)的函數圖象,線段EF表示B種機器人的搬運量yB(千克)與時間x(時)的函數圖象.根據圖象提供的信息,解答下列問題:

(1)求yB關于x的函數解析式;
(2)如果A、B兩種機器人連續搬運5個小時,那么B種機器人比A種機器人多搬運了多少千克?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數字,分別是1,4,7,8.現規定從袋中任取一個小球,對應的數字作為一個兩位數的個位數;然后將小球放回袋中并攪拌均勻,再任取一個小球,對應的數字作為這個兩位數的十位數.
(1)寫出按上述規定得到所有可能的兩位數;
(2)從這些兩位數中任取一個,求其算術平方根大于4且小于7的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视