【題目】如圖,ABCD中,AB=2,以點A為圓心,AB為半徑的圓交邊BC于點E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點E,求圖中陰影部分(扇形)的面積.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD∥BC,
∴四邊形AECD是梯形,
∵AB=AE,
∴AE=CD,
∴四邊形AECD是等腰梯形,
∴AC=DE,
在△AED和△DCA中,
,
∴△AED≌△DCA(SSS)
(2)解:∵DE平分∠ADC,
∴∠ADC=2∠ADE,
∵四邊形AECD是等腰梯形,
∴∠DAE=∠ADC=2∠ADE,
∵DE與⊙A相切于點E,
∴AE⊥DE,
即∠AED=90°,
∴∠ADE=30°,
∴∠DAE=60°,
∴∠DCE=∠AEC=180°﹣∠DAE=120°,
∵四邊形ABCD是平行四邊形,
∴∠BAD=∠DCE=120°,
∴∠BAE=∠BAD﹣∠EAD=60°,
∴S陰影= ×π×22=
π.
【解析】(1)利用平行四邊形的性質和等腰梯形的判定與性質可證得全等;(2)由切線的性質定理和等腰梯形的性質、平行四邊形的性質求出陰影扇形的圓心角度數,進而求出面積.
【考點精析】利用平行四邊形的性質和切線的性質定理對題目進行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D為BC邊的中點,點E為AC上一點,將∠C沿DE翻折,使點C落在AB上的點F處,若∠AEF=50°,則∠A的度數為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,,點
是直線
上一個動點(不與
重合),點
是
邊上一個定點, 過點
作
,交直線
于點
,連接
,過點
作
,交直線
于點
.
如圖①,當點
在線段
上時,求證:
.
在
的條件下,判斷
這三個角的度數和是否為一個定值? 如果是,求出這個值,如果不是,說明理由.
如圖②,當點
在線段
的延長線上時,(2)中的結論是否仍然成立?如果不成立, 請直接寫出
之間的關系.
)當點
在線段
的延長線上時,(2)中的結論是否仍然成立?如果不成立,請直接 寫出
之間的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數;
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題8分)已知:如圖,△ABC中,D是AB的中點,E是AC上一點,EF∥AB,DF∥BE.
(1)猜想:DF與AE的關系是______.
(2)試說明你猜想的正確性.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC度數.小明的思路是:如圖2,過P作PE∥AB,通過平行線性質,可求得∠APC的度數.請寫出具體求解過程.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數量關系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com