精英家教網 > 初中數學 > 題目詳情

【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.

(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.

【答案】(1)長為18米、寬為7米或長為14米、寬為9米;(2)若籬笆再增加4m,圍成的矩形花圃面積不能達到170m2

【解析】

(1)假設能,設AB的長度為x米,則BC的長度為(32﹣2x)米,再根據矩形面積公式列方程求解即可得到答案.

(2)假設能,設AB的長度為y米,則BC的長度為(36﹣2y)米,再根據矩形面積公式列方程,求得方程無解,即假設不成立.

(1)假設能,設AB的長度為x米,則BC的長度為(32﹣2x)米,

根據題意得:x(32﹣2x)=126,

解得:x1=7,x2=9,

32﹣2x=1832﹣2x=14,

∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.

(2)假設能,設AB的長度為y米,則BC的長度為(36﹣2y)米,

根據題意得:y(36﹣2y)=170,

整理得:y2﹣18y+85=0.

∵△=(﹣18)2﹣4×1×85=﹣16<0,

∴該方程無解,

假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到170m2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,,垂足分別為ED,CEBD相交于

1)若,求證:;

2)若,求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在學習軸對稱的時候,老師讓同學們思考課本中的探究題.

如圖(1),要在燃氣管道l上修建一個泵站,分別向AB兩鎮供氣.泵站修在管道的什么地方,可使所用的輸氣管線最短?

你可以在l上找幾個點試一試,能發現什么規律?你可以在上找幾個點試一試,能發現什么規律?

聰明的小華通過獨立思考,很快得出了解決這個問題的正確辦法.他把管道l看成一條直線(圖(2)),問題就轉化為,要在直線l上找一點P,使APBP的和最。淖龇ㄊ沁@樣的:

作點B關于直線l的對稱點B′

連接AB′交直線l于點P,則點P為所求.

請你參考小華的做法解決下列問題.如圖在△ABC中,點DE分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使△PDE得周長最小.

1)在圖中作出點P(保留作圖痕跡,不寫作法).

2)請直接寫出△PDE周長的最小值:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形的頂點在坐標原點,正方形的邊在同一直線上, 在同一直線上,且邊和邊所在直線的解析式分別為: ,則點的坐標是(

A.(6-1)B.(7,-1)C.(7-2)D.(6,-2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形ABC中,,點D在直線BC上,點E在直線AC上,且,當時,則AE的長為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電腦經銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.

1)每臺電腦機箱、液晶顯示器的進價各是多少元?

2)該經銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的方格紙中,有一個以格點為頂點的ABC

1ABC的形狀是 

2)利用網格線畫ABC,使它與ABC關于直線l對稱.

3)在直線l上求作點P使AP+CP的值最小,則AP+CP的最小值= 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數是單獨租用甲種車輛完成任務天數的2倍.

(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A,C,為半徑是6的⊙O上兩點,點B的中點,以線段BA,BC為鄰邊作菱形ABCD,使點D落在⊙O內(不含圓周上),則下列結論:①直線BD必過圓心O;②菱形ABCD的邊長a的取值范圍是0<a<10;③若點D與圓心O重合,則∠ABC=120°;④若DO=2,則菱形ABCD的邊長為.其中正確的是( 。

A. ①③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视