【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=12,求AE的長.
【答案】(1)詳見解析;(2)
【解析】
(1)連接OE、EC,根據已知條件易證∠1+∠3=∠2+∠4=90°,即可得∠OED=90°,所以DE是⊙O的切線;(2)證明△BEC∽△BCA,根據相似三角形的性質可得 ,即BC2=BEBA,設AE=x,則BE=2x,BA=3x,代入可得122=2x3x,解得x=2
,即可得AE=2
.
(1)證明:連接OE、EC,
∵AC是⊙O的直徑,
∴∠AEC=∠BEC=90°,
∵D為BC的中點,
∴ED=DC=BD,
∴∠1=∠2,
∵OE=OC,
∴∠3=∠4,
∴∠1+∠3=∠2+∠4,
即∠OED=∠ACB,
∵∠ACB=90°,
∴∠OED=90°,
∴DE是⊙O的切線;
(2)由(1)知:∠BEC=90°,
∵在Rt△BEC與Rt△BCA中,∠B=∠B,∠BEC=∠BCA,
∴△BEC∽△BCA,
∴ ,
∴BC2=BEBA,
∵AE:EB=1:2,設AE=x,則BE=2x,BA=3x,
∵BC=12,
∴122=2x3x,
解得:x=2,
即AE=2.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是圓上一點,點D是半圓的中點,連接CD交OB于點E,點F是AB延長線上一點,CF=EF.
(1)求證:FC是⊙O的切線;
(2)若CF=5,,求⊙O半徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市生物和地理會考的考試結果以等級形式呈現,分A、B、C、D四個等級.某校八年級學生參加生物會考后,隨機抽取部分學生的生物成績進行統計,繪制成如下兩幅不完整的統計圖.
(1)這次抽樣調查共抽取了 名學生的生物成績.扇形統計圖中,D等級所對應的扇形圓心角度數為 °;
(2)將條形統計圖補充完整;
(3)若該校八年級有400名學生,估計這次考試有多少名學生的生物成績等級為D級?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
,
,反比例函數
在第一象限內的圖象分別交
,
于點
和點
,且
的面積為
.
(1)求直線的解析式;
(2)求反比例函數解析式;
(3)求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=2,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC.
(1)實踐與操作:
利用尺規按下列要求作圖,并在圖中標明相應的字母(保留作圖痕跡,不寫作法)
①作BC邊上的高AD;
②作△ABC的角平分線BE;
(2)綜合與運用;
若△ABC中,AB=AC且∠CAB=36°,
請根據作圖和已知寫出符合括號內要求的正確結論;
結論1: ;(關于角)
結論2: ;(關于線段)
結論3: .(關于三角形)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市要進一批雞蛋進行銷售,有、
兩家農場可供貨.為了比較兩家提供的雞蛋單個大小,超市分別對這兩家農場的雞蛋進行抽樣檢測,通過分析數據確定雞蛋的供貨商.
(1)下列抽樣方式比較合理的是哪一種?請簡述原因.
①分別從、
兩家提供的一箱雞蛋中拿出最上面的兩層(共40枚)雞蛋,并分別稱出其中每一個雞蛋的質量.
②分別從、
兩家提供的一箱雞蛋中每一層隨機抽4枚(共40枚)雞蛋,并分別稱出其中每個雞蛋的質量.
(2)在用合理的方法抽出兩家提供的雞蛋各40枚后,分別稱出每個雞蛋的質量(單位:),結果如表所示(數據包括左端點不包括右端點).
45~47 | 47~49 | 49~51 | 51~53 | 53~55 | |
| 2 | 8 | 15 | 10 | 5 |
| 4 | 6 | 12 | 14 | 4 |
①如果從這兩家農場提供的雞蛋中隨機拿一個,分別估計兩家雞蛋質量在(單位:
)范圍內的概率(數據包括左端點不包括右端點);
②如果你是超市經營者,試通過數據分析確定選擇哪家農場提供的雞蛋.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并完成相應的任務.
托勒密定理:
托勒密(Ptolemy)(公元90年~公元168年),希臘著名的天文學家,他的要著作《天文學大成》被后人稱為“偉大的數學書”,托勒密有時把它叫作《數學文集》,托勒密從書中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.
托勒密定理:
圓內接四邊形中,兩條對角線的乘積等于兩組對邊乘積之和.
已知:如圖1,四邊形ABCD內接于⊙O,
求證:ABCD+BCAD=ACBD
下面是該結論的證明過程:
證明:如圖2,作∠BAE=∠CAD,交BD于點E.
∵
∴∠ABE=∠ACD
∴△ABE∽△ACD
∴
∴ABCD=ACBE
∵
∴∠ACB=∠ADE(依據1)
∵∠BAE=∠CAD
∴∠BAE+∠EAC=∠CAD+∠EAC
即∠BAC=∠EAD
∴△ABC∽△AED(依據2)
∴ADBC=ACED
∴ABCD+ADBC=AC(BE+ED)
∴ABCD+ADBC=ACBD
任務:(1)上述證明過程中的“依據1”、“依據2”分別是指什么?
(2)當圓內接四邊形ABCD是矩形時,托勒密定理就是我們非常熟知的一個定理: .
(請寫出)
(3)如圖3,四邊形ABCD內接于⊙O,AB=3,AD=5,∠BAD=60°,點C為的中點,求AC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com