【題目】如圖,在平面直角坐標系中,直線y=x﹣2與x軸交于點A,與y軸交于點C,拋物線y=
x2+bx+c經過A、C兩點,與x軸的另一交點為點B.
(1)求拋物線的函數表達式;
(2)點D為直線AC下方拋物線上一點,且∠ACD=2∠BAC,求點D的坐標.
【答案】(1)y=x2﹣
x﹣2;(2)D(2,﹣3)
【解析】
(1)求出A、C兩點坐標,利用待定系數法即可解決問題;
(2)過點D作DF∥x軸,交y軸于點E,則∠CFD=∠BAC,推出∠CDF=∠CFD,可得∠ACD=2∠BAC,由此利用三角函數構建方程即可解決問題;
解:(1)直線y=x﹣2與x軸交于點A, 與y軸交于點C,x=0時,y=-2,y=0時,x=4,所以A(4,0),C(0,﹣2),
把A(4,0),C(0,-2)代入y= x2+bx+c,得到
,
解得,
∴拋物線的解析式為y=x2﹣
x﹣2.
(2)過點D作DF∥x軸,交y軸于點E,則∠CFD=∠BAC,
∵∠ACD=2∠BAC=∠CFD+∠CDF,
∴∠CDF=∠CFD,
∴tan∠CDF=tan∠BAC=,
∴
解得x=2,
∴D(2,﹣3).
科目:初中數學 來源: 題型:
【題目】已知點A(a,m)在雙曲線y=上且m<0,過點A作x軸的垂線,垂足為B.
(1)如圖1,當a=﹣2時,P(t,0)是x軸上的動點,將點B繞點P順時針旋轉90°至點C,
①若t=1,直接寫出點C的坐標;
②若雙曲線y=經過點C,求t的值.
(2)如圖2,將圖1中的雙曲線y=(x>0)沿y軸折疊得到雙曲線y=﹣
(x<0),將線段OA繞點O旋轉,點A剛好落在雙曲線y=﹣
(x<0)上的點D(d,n)處,求m和n的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(-2,0),與反比例函數在第一象限內的圖象交于點B(2,n),連結BO,若.
(1)求該反比例函數的解析式;
(2)若直線AB與y軸的交點為C,求△OCB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠B=90°,AB=BC,點D是BC邊上的一點,連接AD,將AD繞點D順時針旋轉90°得到DE,作EF⊥BC交BC的延長線于點F.
(1)依題意補全圖形;
(2)求證:EF=CF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結論:①4a﹣b=0;②c<0;③﹣3b+4c>0;④4a﹣2b≥at2+bt(t為實數);⑤點(﹣,y1),(﹣
,y2),(﹣
,y3)是該拋物線上的點,則y1<y2<y3,其中正確的結論有( )
A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結論:①4a﹣b=0;②c<0;③﹣3b+4c>0;④4a﹣2b≥at2+bt(t為實數);⑤點(﹣,y1),(﹣
,y2),(﹣
,y3)是該拋物線上的點,則y1<y2<y3,其中正確的結論有( 。
A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】瓦子街是上杭城關老城區改造的商業文化購物步行街,瓦子街某商場經營的某個品牌童裝,購進時的單價是60元,根據市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,銷售單價每降低1元,就可多售出20件.
求出銷售量
件
與銷售單價
元
之間的函數關系式;
求出銷售該品牌童裝獲得的利潤
元
與銷售單價
元
之間的函數關系式;
若童裝廠規定該品牌童裝的銷售單價不低于76元且不高于80元,則商場銷售該品牌童裝獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點E,與CD相交于點F,連接EF.
(1)求證:EF平分∠BFD.
(2)若tan∠FBC=,DF=
,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角.
(1)求出樹高AB;
(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發生了變化,假設太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com