【題目】某服裝廠每天生產、
兩種品牌的服裝共600件,
、
兩種品牌的服裝每件的成本和利潤如右表:
A | B | |
成本(元/件) | 50 | 35 |
利潤(元/件) | 20 | 15 |
設每天生產種品牌服裝
件,每天兩種服裝獲利
元.
(1)請寫出關于
的函數關系式;
(2)如果服裝廠每天至少投入成本26400元,那么每天至少獲利多少元?
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①S△ABF=S△ADF②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正確的是( )
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知線段,
,點
是
的中點,點
是
的中點.
(1)若,求線段
的長度.
(2)當線段在線段
上從左向右或從右向左運動時,試判斷線段
的長度是否發生變化,如果不變,請求出線段
的長度;如果變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當△ABC為等邊三角形時,AD與BC的數量關系為AD= BC;
②如圖3,當∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數量關系,并給予證明.
拓展應用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:若a+b=ab,則稱a、b是“相伴數”,例如:3+1.5=3×1.5,因此3和1.5是一組“相伴數”
(1)﹣1與 是一組“相伴數”;
(2)若m、n是一組“相伴數”,2mn﹣ [3m+2(
n﹣m)+3mn﹣6]的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線交BC的延長線于點F.
(1)求證:∠FAD=∠FDA;
(2)若∠B=50°,求∠CAF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的網格中,點A,B,C均在格點上.
(Ⅰ)AC的長度等于_____;
(Ⅱ)在圖中有一點P,若連接AP,PB,PC,滿足AP平分∠A,且PC=PB,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副三角板的兩個銳角頂點重合,,
,
,
分別是
,
的平分線.
(1)如圖①所示,當與
重合時,則
的大小為______.
(2)當繞著點
旋轉至如圖②所示,當
,則
的大小為多少?
(3)當繞著點
旋轉至如圖③所示,當
時,求
的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com