精英家教網 > 初中數學 > 題目詳情

【題目】幾何模型:

條件:如圖1,A、B是直線同旁的兩個定點.

問題:在直線上確定一點P,使PA+PB的值最。

方法:作點A關于直線的對稱點A′,連接A′B于點P,則PA+PB=A′B的值最。ú槐刈C明).

模型應用:

(1)如圖2,已知平面直角坐標系中兩定點A(0,-1),B(2,-1),Px軸上一動點, 則當PA+PB的值最小時,點P的橫坐標是______,此時PA+PB的最小值是______;

(2)如圖3,正方形ABCD的邊長為2,EAB的中點,PAC上一動點.由正方形對稱性可知,BD關于直線AC對稱,連接BD,則PB+PE的最小值是______;

(3)如圖4,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一動點P,則PD+PE的最小值為 ;

(4)如圖5,在菱形ABCD中,AB=8,∠B=60°,點G是邊CD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是_______________.

【答案】(1)P的橫坐標是 1 ,此時PA+PB的最小值是;(2)PB+PE的最小值是 (3)這個最小值為 ;(4)EF+ED的最小值是

【解析】

(1)取點A關于x軸對稱的點A′,連接A′B,交x軸于P,作BHx軸于H,求出OP,得到點P的橫坐標,根據勾股定理求出A′B,得到答案;

(2)由題意易得PB+PE=PD+PE=DE,在ADE中,根據勾股定理求得即可;

(3)由于點BD關于AC對稱,所以連接BD,與AC的交點即為F點.此時PD+PE=BE最小,而BE是等邊ABE的邊,BE=AB,由正方形ABCD的面積為12,可求出AB的長,從而得出結果;

(4)DHAC垂足為HAG交于點E,點H關于AG的對稱點為F,此時EF+ED最小=DH,先證明ADC是等邊三角形,在RTDCH中利用勾股定理即可解決問題.

(1)取點A關于x軸對稱的點A′,連接A′B,交x軸于P,作BHx軸于H,

則此時PA+PB的值最小,

OA=OA=1,BH=1,BHOA,

OP=PH=1,

∴點P的橫坐標是1,

PA+PB=A′B=,

故答案為:1;2;

(2)∵四邊形ABCD是正方形,

AC垂直平分BD,

PB=PD,

由題意易得:PB+PE=PD+PE=DE,

ADE中,根據勾股定理得,DE=

(3)連接BD,與AC交于點F.

∵點BD關于AC對稱,

PD=PB,

PD+PE=PB+PE=BE最小.

∵正方形ABCD的面積為12,

AB=2,

又∵△ABE是等邊三角形,

BE=AB=2,

故所求最小值為2

(4)如圖作DHAC垂足為HAG交于點E,

∵四邊形ABCD是菱形,

AB=AD=CD=BC=8,

∵∠B=60°,

∴∠ADC=B=60°,

∴△ADC是等邊三角形,

AG是中線,

∴∠GAD=GAC

∴點H關于AG的對稱點FAD上,此時EF+ED最小=DH.

RTDHC中,∵∠DHC=90°,DC=6,CDH=ADC=30°,

CH=DC=4,DH=,

EF+DE的最小值=DH=4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形.

1)根據奇異三角形的定義,請你判斷命題等邊三角形一定是奇異三角形是真命題還是假命題?

2)在Rt△ABC中,∠ACB=90°,AB=cAC=b,BC=a,且ba,若Rt△ABC是奇異三角形,求abc;

3)如圖,AB⊙O的直徑,點C⊙O上一點(不與點AB重合),D是半圓的中點,CD在直徑AB的兩側,若在⊙O內存在點E,使AE=AD,CB=CE

求證:△ACE是奇異三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個,藍球1個,現在從中任意摸出一個紅球的概率為

(1)求袋中黃球的個數;

(2)第一次摸出一個球(不放回),第二次再摸出一個球,請用樹狀圖或列表法求兩次摸出的都是紅球的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AE⊥BCE,將△ABE沿AE所在直線翻折得△AEF,若AB=2,∠B=45°,則△AEF與菱形ABCD重疊部分(陰影部分)的面積為( ).

A. 2 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店購進、兩種商品,購買1商品比購買1商品多花10元,并且花費300元購買商品和花費100元購買商品的數量相等.

1)求購買一個商品和一個商品各需要多少元;

2)商店準備購買、兩種商品共80個,若商品的數量不少于商品數量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=﹣x2+2x+3.

(1)求其開口方向、對稱軸、頂點坐標,并畫出這個函數的圖象;

(2)根據圖象,直接寫出:①當函數值y為正數時,自變量x的取值范圍;

②當﹣2<x<2時,函數值y的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=x2+bx+c的圖象交x軸于A、D兩點并經過B點,已知A點坐標是(2,0),B點的坐標是(8,6).

(1)求二次函數的解析式;

(2)求函數圖象的頂點坐標及D點的坐標;

(3)該二次函數的對稱軸交x軸于C點,連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,個邊長為的相鄰正方形的一邊均在同一直線上,點,,,…分別為邊,,,…,的中點,的面積為的面積為,…的面積為,則________.(用含的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小區有一塊四邊形空地,其中.為響應沙區創文,美化小區的號召,小區計劃將這塊四邊形空地進行規劃整理.過點作了垂直于的小路.經測量,,,.

1)求這塊空地的面積;

2)求小路的長.(答案可含根號)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视