【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點P.
(1)如果∠A=80°,求∠BPC的度數;
(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點Q,試探索∠Q、∠A之間的數量關系.
(3)如圖③,延長線段BP、QC交于點E,△BQE中,存在一個內角等于另一個內角的2倍,求∠A的度數.
【答案】(1)∠P=130°;(2)∠Q=90°-∠A;(3)∠A=60°、120°、90°
【解析】試題分析:(1)運用三角形的內角和定理及角平分線的定義,首先求出∠1+∠2,進而求出∠BPC即可解決問題;
(2)根據三角形的外角性質分別表示出∠MBC與∠BCN,再根據角平分線的性質可求得∠CBQ+∠BCQ,最后根據三角形內角和定理即可求解;
(3)在△BQE中,由于∠Q=90°﹣∠A,求出∠E=
∠A,∠EBQ=90°,所以如果△BQE中,存在一個內角等于另一個內角的2倍,那么分四種情況進行討論:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E;④∠E=2∠Q;分別列出方程,求解即可.
試題解析:(1)如圖①,∵在△ABC中,∠A+∠ABC+∠ACB=180°,且∠A=80°,∴∠ABC+∠ACB=100°,∵∠1=∠ABC,∠2=
∠ACB,∴∠1+∠2=
(∠ABC+∠ACB)=
×100°=50°,∴∠BPC=180°﹣(∠1+∠2)=180°﹣50°=130°.
(2)如圖②,∵∠MBC=∠A+∠ACB,∠BCN=∠ABC+∠A,∴∠MBC+∠BCN=∠A+∠ABC+∠ACB+∠A=180°+∠A.
∵BE,CQ分別為△ABC的外角∠MBC,∠NCB的角平分線,∴∠CBQ+∠BCQ=(180°+∠A),∴∠Q=180°﹣(∠CBQ+∠BCQ)=90°﹣
∠A;
(3)如圖③,連結BC并延長到點F.
∵CQ為△ABC的外角∠NCB的角平分線,∴CE是△ABC的外角∠ACF的平分線,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;
∵∠EBQ=∠EBC+∠CBQ
=∠ABC+
∠MBC
=(∠ABC+∠A+∠ACB)=90°.
如果△BQE中,存在一個內角等于另一個內角的2倍,那么分四種情況:
①∠EBQ=2∠E=90°,則∠E=45°,∠A=2∠E=90°;
②∠EBQ=2∠Q=90°,則∠Q=45°,∠E=45°,∠A=2∠E=90°;
③∠Q=2∠E,則90°﹣∠A=∠A,解得∠A=60°;
④∠E=2∠Q,則∠A=2(90°﹣
∠A),解得∠A=120°.
綜上所述,∠A的度數是90°或60°或120°.
科目:初中數學 來源: 題型:
【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如圖擺放,點D為AB的中點,DE交AC于點P,DF經過點C,將△EDF繞點D順時針方向旋轉α(0°<α<60°),DE′交AC于點M,DF′交BC于點N,則的值為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設O是等邊三角形ABC內一點,已知∠AOB=130°,∠BOC=125°,則在以線段OA,OB,OC為邊構成的三角形中,內角不可能取到的角度是( )
A.65° B.60° C.45° D.70°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直角梯形AOBC的位置圖所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分別在線段AC、線段BC上運動,當△MON的面積達到最大時,存在一種使得△MON周長最小的情況,則此時點M的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用四舍五入法按要求對0.05019分別取近似值,其中錯誤的是( 。
A. 0.1(精確到0.1) B. 0.05(精確到千分位)
C. 0.05(精確到百分位) D. 0.0502(精確到0.0001)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中正確的是( )
A. 有一組鄰邊相等的梯形是等腰梯形;
B. 一組對邊平行,另一組對邊相等的四邊形是等腰梯形;
C. 有一組對角互補的梯形是等腰梯形;
D. 有兩組對角分別相等的四邊形是等腰梯形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com