【題目】將一個直角三角形紙片ABO放置在平面直角坐標系中,點A(,0),B(0,1),O(0,0).
(1)點P為邊OA上一點(點P不與A,O重合),沿BP將紙片折疊得A的對應點A′.邊BA′與x軸交于點Q.
①如圖1,當點A′剛好落在y軸上時,求點A′的坐標.
②如圖2,當A′P⊥OA,若線段OQ在x軸上移動得到線段O′Q′(線段OQ平移時A′不動),當△A′O′Q′周長最小時,求OO′的長度.
(2)如圖3,若點P為邊AB上一點(點P不與A,B重合),沿OP將紙片折疊得A的對應點A″,當∠BPA″=30°時,求點P的坐標.
科目:初中數學 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300km的A,B兩地同時出發相向而行,甲到B地后立即返回,下圖是它們離各自出發地的距離y與行駛時間x之間的函數圖象.
(1)求甲車離出發地的距離y與行駛時間x之間的函數關系式,并標明自變量的取值范圍;
(2)若已知乙車行駛的速度是40千米/小時,求出發后多長時間,兩車離各自出發地的距離相等;
(3)它們在行駛過程中有幾次相遇.并求出每次相遇的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應保證相似圖形的“接近度”相等.
(1)設菱形相鄰兩個內角的度數分別為和
,將菱形的“接近度”定義為
,于是,
越小,菱形越接近于正方形.
①若菱形的一個內角為,則該菱形的“接近度”等于 ;
②當菱形的“接近度”等于 時,菱形是正方形.
(2)設矩形相鄰兩條邊長分別是和
(
),將矩形的“接近度”定義為
,于是
越小,矩形越接近于正方形.
你認為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=1,則△A8B8A9的邊長_________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為( )
A. (,-1) B. (2,﹣1) C. (1,-
) D. (﹣1,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,點A、點B在直線l異側,以點A為圓心,AB長為半徑作弧交直線l于C、D兩點.分別以C、D為圓心,AB長為半徑作弧,兩弧在l下方交于點E,連結AE.
(1)根據題意,利用直尺和圓規補全圖形;
(2)證明:l垂直平分AE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其兩邊分別交邊AB,AC于點E,F.
(1)求證:△ABD是等邊三角形;
(2)求證:BE=AF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com