精英家教網 > 初中數學 > 題目詳情
已知:如圖,在△ABC中,∠ACB=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,過B、D、E三點精英家教網作⊙O.
(1)求證:AC是⊙O的切線;
(2)設⊙O交BC于點F,連接EF,若BC=9,CA=12.求
EFAC
的值.
分析:(1)要想證明AC是切線,需要先連接OD,利用“經過半徑的外端并且垂直于半徑的直線是圓的切線”來證明AC是⊙O的切線,所以需要根據∠OBD=∠ODB,∠CBD=∠ABD,求得BC∥OD從而得到OD⊥AC;
(2)先利用△ADO∽△ACB求出半徑r的值,再利用△BEF∽△BAC的相似比即可求出
EF
AC
的值為
3
4
解答:精英家教網(1)證明:連接OD,
∵DE⊥DB,∴∠BDE=90°.
∴BE是⊙O的直徑.
∵OB=OD,∴∠OBD=∠ODB.
∵BD平分∠ABC,∴∠CBD=∠ABD.
∴∠CBD=∠ODB.
∴BC∥OD.
∵∠ACB=90°,
∴BC⊥AC.
∴OD⊥AC.(1分)
∵OD是⊙O的半徑,
∴AC是⊙O的切線.(2分)

(2)解:設⊙O的半徑為r,
在△ABC中,∠ACB=90°,BC=9,CA=12,
∴AB=15.(3分)
∵BC∥OD,
∴△ADO∽△ACB.
AO
AB
=
OD
BC

15-r
15
=
r
9
,
r=
45
8

BE=
45
4
,(4分)
又∵BE是⊙O的直徑,
∴∠BEF=90°,
∴△BEF∽△BAC,
EF
AC
=
BE
BA
=
45
4
15
=
3
4
.(5分)
點評:主要考查了角平分線的性質和切線的判定以及相似三角形中的成比例線段的運用.要掌握角平分線的性質和切線的判定,要會靈活運用相似中的成比例線段某條線段的長度或比值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视