【題目】股民王先生上周星期五買進某公司股票1000股,每股18元,本周該股票的漲跌情況如表(正數表示價格比前一天上漲,負數表示價格比前一天下跌,單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 |
(1)星期三結束時,該股票每股多少元?
(2)該股票本周內每股的最高價和最低價分別是多少元?
科目:初中數學 來源: 題型:
【題目】春節前,安徽黃山腳下的小村莊的集市上,人山人海,還有人在擺“摸彩”游戲,只見他手拿一個黑色的袋子,內裝大小、形狀、質量完全相同的白球20只,且每一個球上都寫有號碼(1~20號)和1只紅球,規定:每次只摸一只球.摸前交1元錢且在1~20內寫一個號碼,摸到紅球獎5元,摸到號碼數與你寫的號碼相同獎10元.
(1)你認為該游戲對“摸彩”者有利嗎?說明你的理由.
(2)若一個“摸彩”者多次摸獎后,他平均每次將獲利或損失多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,在直角坐標系xOy中,點A,點B坐標分別為(﹣1,0),(0, ),連結AB,OD由△AOB繞O點順時針旋轉60°而得.
(1)求點C的坐標;
(2)△AOB繞點O順時針旋轉60°所掃過的面積;
(3)線段AB繞點O順時針旋轉60°所掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩條直線AB、CD相交于點O,且∠AOC=90°,射線OM從OB開始繞O點逆時針方向旋轉,速度為15°/s,射線ON同時從OD開始繞O點順時針方向旋轉,速度為12°/s.兩條射線OM、ON同時運動,運動時間為t秒.(本題出現的角均小于平角)
(1)當t=2時,∠MON的度數為 ,∠BON的度數為 ;∠MOC的度數為
(2)當0<t<12時,若∠AOM=3∠AON-60°,試求出t的值;
(3)當0<t<6時,探究的值,問:t滿足怎樣的條件是定值;滿足怎樣的條件不是定值?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c的圖象經過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結論:
①二次函數y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結論的個數是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經過點A,點(﹣2,m)和(﹣5,n)在該拋物線上,則下列結論中不正確的是( 。
A. b2>4ac B. m>n C. 方程ax2+bx+c=﹣4的兩根為﹣5或﹣1 D. ax2+bx+c≥﹣6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(﹣, 0),點B(2,0),與y軸交于點C(0,1),連接BC.
(1)求拋物線的解析式;
(2)N為拋物線上的一個動點,過點N作NP⊥x軸于點P,設點N的橫坐標為t(﹣<t<2),求△ABN的面積s與t的函數解析式;
(3)若0<t<2且t≠0時,△OPN∽△COB,求點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:
如圖1,在平面內選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數θ與OM的長度m確定,有序數對(θ,m)稱為M點的“極坐標”,這樣建立的坐標系稱為“極坐標系”.
應用:在圖2的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標應記為( 。
A.(60°,4) B.(45°,4) C.(60°,2 ) D.(50°,2
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com