精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC內接于⊙O,且AB=AC.延長BC到點D,使CD=CA,連接AD交⊙O于點E.

(1)求證:△ABE≌△CDE;

(2)填空:

①當∠ABC的度數為 時,四邊形AOCE是菱形;

②若AE=6,BE=8,則EF的長為 .

【答案】(1)證明見解析(2)①60②

【解析】分析:1)根據AAS證明兩三角形全等;

2①先證明∠AOC=AEC=120°,OAE=OCE=60°,可得AOCE,OA=OC可得結論;

②根據(1)中的全等得BE=DE=8,AE=CE=6證明△ECD∽△CFB,列式可得=證明△AEF∽△BCF,則可得EF的長.

詳解:(1)證明AB=ACCD=CA,∴∠ABC=ACB,AB=CD

∵四邊形ABCE是圓內接四邊形∴∠ECD=BAE,CED=ABC

∵∠ABC=ACB=AEB,∴∠CED=AEB∴△ABE≌△CDEAAS);

2①當∠ABC的度數為60°,四邊形AOCE是菱形;

理由是連接AO、OC

∵四邊形ABCE是圓內接四邊形,∴∠ABC+∠AEC=180°.

∵∠ABC=60∴∠AEC=120°=AOC

OA=OC,∴∠OAC=OCA=30°.

AB=AC∴△ABC是等邊三角形,∴∠ACB=60°.

∵∠ACB=CAD+∠D

AC=CD,∴∠CAD=D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=OCE=60°,∴四邊形AOCE是平行四邊形.

OA=OC,AOCE是菱形;

②由(1)得ABE≌△CDEBE=DE=8,AE=CE=6,∴∠D=EBC

∵∠CED=ABC=ACB∴△ECD∽△CFB,=

∵∠AFE=BFC,AEB=FCB,∴△AEF∽△BCF=,EF==

故答案為:①60°;

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市為加快資金回籠,特推出如下優惠方案:

①一次購買價值不超過200元的商品,不享受優惠;

②一次購買價值超過200元,但不超過500元的商品,一律九折;

③一次購買價值超過500元的商品,一律八折.

根據以上方案解決下列問題:

1)若某人一次購買價值350元的商品,則實際應付款     元(直接填空);

2)某人一次購買了價值元的商品,實際付款432元,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某種水果第一天以2/斤的價格賣出a斤,第二天以1.5/斤的價格賣出b斤第三天以1.2/斤的價格賣出c斤,求:

1)這三天一共賣出水果多少斤?

2)這三天一共賣得多少錢?

3)這三天平均售價是多少?并計算當a=30b=40,c=45時,平均售價是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】選取二次三項式中的兩項,配成完全平方式的過程叫作配方.例如①選取二次項和一次項配方:;②選取二次項和常數項配方:;③選取一次項和常數項配方:

根據上述材料解決下面問題:

1)寫出的兩種不同形式的配方.

2)已知,求的值.

3)已知a、b、c為三條線段,且滿足,試判斷a、bc能否圍成三角形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點O內部,連接OA,OB,OC,說明:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在等邊ABC中,點D,E分別在邊AB,AC上,AD=AE,連接BE,CD,點M、N、P分別是BE、CD、BC的中點.

(1)觀察猜想:圖1中,PMN的形狀是   ; 

(2)探究證明:把ADE繞點A逆時針方向旋轉到圖2的位置,PMN的形狀是否發生改變?并說明理由; 

(3)拓展延伸:把ADE繞點A在平面內自由旋轉,若AD=1,AB=3,請直接寫出PMN的周長的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某港口P位于東西方向的海岸線上,遠航號、海天號輪船同時離開港口,各自沿一固定方向航行,遠航號每小時航行16海里,海天號每小時航行12海里.它們離開港口一個半小時后,分別位于點QR處,且相距30海里,如果知道遠航號沿北偏東方向航行,請求出海天號的航行方向?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 6個相同的小正方體擺成如圖的幾何體.

1)畫出該幾何體的主視圖、左視圖、俯視圖;

2)如果每個小正方體棱長為,則該幾何體的表面積是

3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视