【題目】下列各變量之間是反比例關系的是( )
A. 存入銀行的利息和本金 B. 在耕地面積一定的情況下,人均占有耕地面積與人口數
C. 汽車行駛的時間與速度 D. 電線的長度與其質量
科目:初中數學 來源: 題型:
【題目】如圖,在正方形中,
.點
為
邊上一點(不與點
重合),點
為
邊上一點,線段
、
相交于點
,其中
.
求證:
;
若
,求
的長及四邊形
的面積;
連接
,若
是以
為腰的等腰三角形,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線(
)過E,A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為( 。
A. 1+ B. 1+
C. 2sin20°+
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD繞點C順時針旋轉90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;
(1)求證:AM=FM;
(2)若∠AMD=a.求證:=cosα.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,點、
、
在
軸上,且
,分別過點
、
、
作
軸的平行線,與反比例函數
的圖象分別交于點
、
、
,分別過點
、
、
作
軸的平行線,分別與
軸交于點
、
、
,連接
、
、
,若圖中三個陰影部分的面積之和為
,則
________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系xoy中,直線y=x+
交x軸于點B,交y軸于點A,過點C(1,0)作x軸的垂線l,將直線l繞點C按逆時針方向旋轉,旋轉角為α(0°<α<180°).
(1)當直線l與直線y=x+
平行時,求出直線l的解析式;
(2)若直線l經過點A,①求線段AC的長;②直接寫出旋轉角α的度數;
(3)若直線l在旋轉過程中與y軸交于D點,當△ABD、△ACD、△BCD均為等腰三角形時,直接寫出符合條件的旋轉角α的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的代數式x2+bx+c,設代數式的值為y.下表中列出了當x分別取﹣1,0,1,2,3,4,5,…m,m+1…時對應的y值.
x | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | m | m+1 | |||
y | 10 | 5 | 2 | 1 | 2 | 5 | n | p | q |
(1)表中n的值為 ;
(2)當x= 時,y有最小值,最小值是 ;
(3)比較p與q的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數式表示);
(2)若以AD為直徑的圓經過點C.
①求拋物線的函數關系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com